{"title":"HyEpiSeiD: a hybrid convolutional neural network and gated recurrent unit model for epileptic seizure detection from electroencephalogram signals.","authors":"Rajdeep Bhadra, Pawan Kumar Singh, Mufti Mahmud","doi":"10.1186/s40708-024-00234-x","DOIUrl":null,"url":null,"abstract":"<p><p>Epileptic seizure (ES) detection is an active research area, that aims at patient-specific ES detection with high accuracy from electroencephalogram (EEG) signals. The early detection of seizure is crucial for timely medical intervention and prevention of further injuries of the patients. This work proposes a robust deep learning framework called HyEpiSeiD that extracts self-trained features from the pre-processed EEG signals using a hybrid combination of convolutional neural network followed by two gated recurrent unit layers and performs prediction based on those extracted features. The proposed HyEpiSeiD framework is evaluated on two public datasets, the UCI Epilepsy and Mendeley datasets. The proposed HyEpiSeiD model achieved 99.01% and 97.50% classification accuracy, respectively, outperforming most of the state-of-the-art methods in epilepsy detection domain.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"21"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339197/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00234-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Epileptic seizure (ES) detection is an active research area, that aims at patient-specific ES detection with high accuracy from electroencephalogram (EEG) signals. The early detection of seizure is crucial for timely medical intervention and prevention of further injuries of the patients. This work proposes a robust deep learning framework called HyEpiSeiD that extracts self-trained features from the pre-processed EEG signals using a hybrid combination of convolutional neural network followed by two gated recurrent unit layers and performs prediction based on those extracted features. The proposed HyEpiSeiD framework is evaluated on two public datasets, the UCI Epilepsy and Mendeley datasets. The proposed HyEpiSeiD model achieved 99.01% and 97.50% classification accuracy, respectively, outperforming most of the state-of-the-art methods in epilepsy detection domain.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing