A methodology for planning, implementation and evaluation of skills intelligence management - results of a design science project in technology organisations.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-08-07 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1424924
Kadri-Liis Kusmin, Peeter Normak, Tobias Ley
{"title":"A methodology for planning, implementation and evaluation of skills intelligence management - results of a design science project in technology organisations.","authors":"Kadri-Liis Kusmin, Peeter Normak, Tobias Ley","doi":"10.3389/frai.2024.1424924","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The evolving labour market requirements amidst digital transformation necessitate robust skills intelligence for informed decision-making and adaptability. Novel technologies such as Big Data, Machine Learning, and Artificial Intelligence have significant potential for enhancing skills intelligence.</p><p><strong>Methods: </strong>This study bridges the gap between theory and practice by designing a novel software artefact for skills intelligence management. With its systematic framework for identifying skills intelligence elements, an assessment instrument, and an implementation methodology, the artefact ensures a thorough approach to skills intelligence management.</p><p><strong>Results: </strong>The artefact was demonstrated in 11 organisations. Feedback collected from interviews, focus group sessions, and observations (<i>N</i> = 19) indicated that the artefact is a feasible starting point for implementing or systematising skills intelligence management. Participants suggested improvements but concurred that the systematic approach enhances skills intelligence data collection and quality.</p><p><strong>Discussion: </strong>The study shows that the artefact facilitates the application of advanced technologies in skills intelligence management. Additionally, it contributes a set of principles for effective skills intelligence management, fostering a broader conversation on this critical topic. Participants' feedback underscores the artefact's potential and provides a basis for further refinement and application in diverse organisational contexts.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1424924"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1424924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The evolving labour market requirements amidst digital transformation necessitate robust skills intelligence for informed decision-making and adaptability. Novel technologies such as Big Data, Machine Learning, and Artificial Intelligence have significant potential for enhancing skills intelligence.

Methods: This study bridges the gap between theory and practice by designing a novel software artefact for skills intelligence management. With its systematic framework for identifying skills intelligence elements, an assessment instrument, and an implementation methodology, the artefact ensures a thorough approach to skills intelligence management.

Results: The artefact was demonstrated in 11 organisations. Feedback collected from interviews, focus group sessions, and observations (N = 19) indicated that the artefact is a feasible starting point for implementing or systematising skills intelligence management. Participants suggested improvements but concurred that the systematic approach enhances skills intelligence data collection and quality.

Discussion: The study shows that the artefact facilitates the application of advanced technologies in skills intelligence management. Additionally, it contributes a set of principles for effective skills intelligence management, fostering a broader conversation on this critical topic. Participants' feedback underscores the artefact's potential and provides a basis for further refinement and application in diverse organisational contexts.

技能智能管理的规划、实施和评估方法--技术组织设计科学项目的成果。
导言:在数字化转型过程中,劳动力市场的需求不断变化,这就需要强大的技能智能,以便做出明智的决策和提高适应能力。大数据、机器学习和人工智能等新技术在提高技能智能方面具有巨大潜力:本研究通过设计一种用于技能智能管理的新型软件工具,在理论与实践之间架起了一座桥梁。凭借其识别技能智能要素的系统框架、评估工具和实施方法,该工具确保了技能智能管理的彻底性:结果:在 11 个组织中演示了该工具。从访谈、焦点小组会议和观察(N = 19)中收集到的反馈表明,该工具是实施技能智能管理或使其系统化的可行起点。参与者提出了改进建议,但一致认为系统化方法提高了技能情报数据的收集和质量:讨论:研究表明,该工具有助于在技能情报管理中应用先进技术。此外,它还为有效的技能情报管理提供了一套原则,促进了关于这一关键主题的更广泛对话。参与者的反馈意见强调了人工智能的潜力,并为进一步完善和应用于不同的组织环境奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信