Ting Zhao, Hui-Lan Zhang, Jie Feng, Long Cui, Li Sun, Hong-Jian Li, Lu-Hai Yu
{"title":"Impact of UGT1A4 and UGT2B7 polymorphisms on lamotrigine plasma concentration in patients with bipolar disorder.","authors":"Ting Zhao, Hui-Lan Zhang, Jie Feng, Long Cui, Li Sun, Hong-Jian Li, Lu-Hai Yu","doi":"10.1097/FPC.0000000000000543","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to evaluate the effect of UGT1A4 and UGT2B7 polymorphisms on the plasma concentration of lamotrigine in Chinese patients with bipolar disorder.</p><p><strong>Methods: </strong>A total of 104 patients were included in this study. Steady-state plasma lamotrigine concentrations were determined in each patient after at least 21 days of continuous treatment with a set dose of the drug. Lamotrigine plasma concentrations were ascertained using ultra-performance liquid chromatography. Simultaneously, plasma samples were used for patient genotyping.</p><p><strong>Results: </strong>The age, sex, BMI, daily lamotrigine dose, plasma lamotrigine concentration, and lamotrigine concentration/dose ratio of patients exhibited significant differences, and these were associated with differences in the genotype [ UGT1A4 -142T>G and UGT2B7 -161C>T ( P < 0.05)]. Patients with the GG and GT genotypes in UGT1A4 -142T>G had significantly higher lamotrigine concentration/dose values (1.6 ± 1.1 and 1.7 ± 0.5 μg/ml per mg/kg) than those with the TT genotype (1.4 ± 1.1 μg/ml per mg/kg). Likewise, patients with the UGT2B7 -161C>T TT genotype had significantly higher lamotrigine concentration/dose values (1.6 ± 1.1 μg/ml per mg/kg) than those with the CC genotype (1.3 ± 1.3 μg/ml per mg/kg). Multiple linear regression analysis showed that sex, lamotrigine dose, UGT1A4 -142T>G, and UGT2B7 -161C>T were the most important factors influencing lamotrigine pharmacokinetics ( P < 0.001).</p><p><strong>Conclusion: </strong>The study results suggest that the UGT1A4 -142T>G and UGT2B7 -161C>T polymorphisms affect lamotrigine plasma concentrations in patients with bipolar disorder.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"261-267"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenetics and genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FPC.0000000000000543","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The purpose of this study was to evaluate the effect of UGT1A4 and UGT2B7 polymorphisms on the plasma concentration of lamotrigine in Chinese patients with bipolar disorder.
Methods: A total of 104 patients were included in this study. Steady-state plasma lamotrigine concentrations were determined in each patient after at least 21 days of continuous treatment with a set dose of the drug. Lamotrigine plasma concentrations were ascertained using ultra-performance liquid chromatography. Simultaneously, plasma samples were used for patient genotyping.
Results: The age, sex, BMI, daily lamotrigine dose, plasma lamotrigine concentration, and lamotrigine concentration/dose ratio of patients exhibited significant differences, and these were associated with differences in the genotype [ UGT1A4 -142T>G and UGT2B7 -161C>T ( P < 0.05)]. Patients with the GG and GT genotypes in UGT1A4 -142T>G had significantly higher lamotrigine concentration/dose values (1.6 ± 1.1 and 1.7 ± 0.5 μg/ml per mg/kg) than those with the TT genotype (1.4 ± 1.1 μg/ml per mg/kg). Likewise, patients with the UGT2B7 -161C>T TT genotype had significantly higher lamotrigine concentration/dose values (1.6 ± 1.1 μg/ml per mg/kg) than those with the CC genotype (1.3 ± 1.3 μg/ml per mg/kg). Multiple linear regression analysis showed that sex, lamotrigine dose, UGT1A4 -142T>G, and UGT2B7 -161C>T were the most important factors influencing lamotrigine pharmacokinetics ( P < 0.001).
Conclusion: The study results suggest that the UGT1A4 -142T>G and UGT2B7 -161C>T polymorphisms affect lamotrigine plasma concentrations in patients with bipolar disorder.
期刊介绍:
Pharmacogenetics and Genomics is devoted to the rapid publication of research papers, brief review articles and short communications on genetic determinants in response to drugs and other chemicals in humans and animals. The Journal brings together papers from the entire spectrum of biomedical research and science, including biochemistry, bioinformatics, clinical pharmacology, clinical pharmacy, epidemiology, genetics, genomics, molecular biology, pharmacology, pharmaceutical sciences, and toxicology. Under a single cover, the Journal provides a forum for all aspects of the genetics and genomics of host response to exogenous chemicals: from the gene to the clinic.