Using DeepSignalingFlow to mine signaling flows interpreting mechanism of synergy of cocktails.

IF 3.5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Heming Zhang, Yixin Chen, Philip Payne, Fuhai Li
{"title":"Using DeepSignalingFlow to mine signaling flows interpreting mechanism of synergy of cocktails.","authors":"Heming Zhang, Yixin Chen, Philip Payne, Fuhai Li","doi":"10.1038/s41540-024-00421-w","DOIUrl":null,"url":null,"abstract":"<p><p>Complex signaling pathways are believed to be responsible for drug resistance. Drug combinations perturbing multiple signaling targets have the potential to reduce drug resistance. The large-scale multi-omic datasets and experimental drug combination synergistic score data are valuable resources to study mechanisms of synergy (MoS) to guide the development of precision drug combinations. However, signaling patterns of MoS are complex and remain unclear, and thus it is challenging to identify synergistic drug combinations in clinical. Herein, we proposed a novel integrative and interpretable graph AI model, DeepSignalingFlow, to uncover the MoS by integrating and mining multi-omic data. The major innovation is that we uncover MoS by modeling the signaling flow from multi-omic features of essential disease proteins to the drug targets, which has not been introduced by the existing models. The model performance was assessed utilizing four distinct drug combination synergy evaluation datasets, i.e., NCI ALMANAC, O'Neil, DrugComb, and DrugCombDB. The comparison results showed that the proposed model outperformed existing graph AI models in terms of synergy score prediction, and can interpret MoS using the core signaling flows. The code is publicly accessible via Github: https://github.com/FuhaiLiAiLab/DeepSignalingFlow.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339460/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00421-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Complex signaling pathways are believed to be responsible for drug resistance. Drug combinations perturbing multiple signaling targets have the potential to reduce drug resistance. The large-scale multi-omic datasets and experimental drug combination synergistic score data are valuable resources to study mechanisms of synergy (MoS) to guide the development of precision drug combinations. However, signaling patterns of MoS are complex and remain unclear, and thus it is challenging to identify synergistic drug combinations in clinical. Herein, we proposed a novel integrative and interpretable graph AI model, DeepSignalingFlow, to uncover the MoS by integrating and mining multi-omic data. The major innovation is that we uncover MoS by modeling the signaling flow from multi-omic features of essential disease proteins to the drug targets, which has not been introduced by the existing models. The model performance was assessed utilizing four distinct drug combination synergy evaluation datasets, i.e., NCI ALMANAC, O'Neil, DrugComb, and DrugCombDB. The comparison results showed that the proposed model outperformed existing graph AI models in terms of synergy score prediction, and can interpret MoS using the core signaling flows. The code is publicly accessible via Github: https://github.com/FuhaiLiAiLab/DeepSignalingFlow.

Abstract Image

使用 DeepSignalingFlow 挖掘信号流,解释鸡尾酒的协同作用机制。
复杂的信号通路被认为是导致耐药性的原因。干扰多个信号靶点的药物组合有可能减少耐药性。大规模多组学数据集和实验性药物组合协同得分数据是研究协同机制(MoS)的宝贵资源,可用于指导精准药物组合的开发。然而,MoS 的信号转导模式十分复杂,目前仍不清楚,因此在临床上识别协同药物组合具有挑战性。在此,我们提出了一种新颖的整合性和可解释性图人工智能模型--DeepSignalingFlow,通过整合和挖掘多组学数据来揭示MoS。该模型的主要创新之处在于,我们通过模拟从基本疾病蛋白的多组学特征到药物靶点的信号流来揭示MoS,而现有模型并未引入这种信号流。我们利用 NCI ALMANAC、O'Neil、DrugComb 和 DrugCombDB 这四个不同的药物组合协同作用评估数据集对该模型的性能进行了评估。比较结果表明,所提出的模型在协同作用得分预测方面优于现有的图人工智能模型,并能利用核心信号流解释 MoS。代码可通过 Github 公开访问:https://github.com/FuhaiLiAiLab/DeepSignalingFlow。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Systems Biology and Applications
NPJ Systems Biology and Applications Mathematics-Applied Mathematics
CiteScore
5.80
自引率
0.00%
发文量
46
审稿时长
8 weeks
期刊介绍: npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology. We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信