AAV-mediated Stambp gene replacement therapy rescues neurological defects in a mouse model of microcephaly-capillary malformation syndrome.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Molecular Therapy Pub Date : 2024-11-06 Epub Date: 2024-08-22 DOI:10.1016/j.ymthe.2024.08.017
Meixin Hu, Jun Li, Jingxin Deng, Chunxue Liu, Yingying Liu, Huiping Li, Weijun Feng, Xiu Xu
{"title":"AAV-mediated Stambp gene replacement therapy rescues neurological defects in a mouse model of microcephaly-capillary malformation syndrome.","authors":"Meixin Hu, Jun Li, Jingxin Deng, Chunxue Liu, Yingying Liu, Huiping Li, Weijun Feng, Xiu Xu","doi":"10.1016/j.ymthe.2024.08.017","DOIUrl":null,"url":null,"abstract":"<p><p>The microcephaly-capillary malformation (MIC-CAP) syndrome is a life-threatening disease caused by biallelic mutations of the STAMBP gene, which encodes an endosomal deubiquitinating enzyme. To establish a suitable preclinical animal model for clinical therapeutic practice, we generated a central nervous system (CNS)-specific Stambp knockout mouse model (Stambp <sup>Sox1-cKO</sup>) that phenocopies Stambp null mice including progressive microcephaly, postnatal growth retardation and complete penetrance of preweaning death. In this MIC-CAP syndrome mouse model, early-onset neuronal death occurs specifically in the hippocampus and cortex, accompanied by aggregation of ubiquitinated proteins, and massive neuroinflammation. Importantly, neonatal AAV9-mediated gene supplementation of Stambp in the brain could significantly improve neurological defects, sustain growth, and prolong the lifespan of Stambp<sup>Sox1-cKO</sup> mice. Together, our findings reveal a central role of brain defects in the pathogenesis of STAMBP deficiency and provide preclinical evidence that postnatal gene replacement is an effective approach to cure the disease.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"4095-4107"},"PeriodicalIF":12.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.08.017","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The microcephaly-capillary malformation (MIC-CAP) syndrome is a life-threatening disease caused by biallelic mutations of the STAMBP gene, which encodes an endosomal deubiquitinating enzyme. To establish a suitable preclinical animal model for clinical therapeutic practice, we generated a central nervous system (CNS)-specific Stambp knockout mouse model (Stambp Sox1-cKO) that phenocopies Stambp null mice including progressive microcephaly, postnatal growth retardation and complete penetrance of preweaning death. In this MIC-CAP syndrome mouse model, early-onset neuronal death occurs specifically in the hippocampus and cortex, accompanied by aggregation of ubiquitinated proteins, and massive neuroinflammation. Importantly, neonatal AAV9-mediated gene supplementation of Stambp in the brain could significantly improve neurological defects, sustain growth, and prolong the lifespan of StambpSox1-cKO mice. Together, our findings reveal a central role of brain defects in the pathogenesis of STAMBP deficiency and provide preclinical evidence that postnatal gene replacement is an effective approach to cure the disease.

AAV介导的Stambp基因替代疗法可挽救小头畸形-毛细血管畸形综合征小鼠模型的神经缺陷。
小头畸形-毛细血管畸形(MIC-CAP)综合征是一种威胁生命的疾病,由 STAMBP 基因的双倍突变引起,STAMBP 基因编码一种内体去泛素化酶。为了建立一个适用于临床治疗的临床前动物模型,我们建立了一个中枢神经系统(CNS)特异性 Stambp 基因敲除小鼠模型(StambpSox1-cKO),该模型可复制 Stambp 基因缺失小鼠的表型,包括进行性小头畸形、出生后生长迟缓和断奶前死亡的完全穿透性。在这种 MIC-CAP 综合征小鼠模型中,早发性神经元死亡特别发生在海马和皮层,同时伴有泛素化蛋白的聚集和大规模神经炎症。重要的是,新生儿期 AAV9 介导的脑内 Stambp 基因补充能显著改善 StambpSox1-cKO 小鼠的神经系统缺陷、维持生长并延长寿命。总之,我们的研究结果揭示了大脑缺陷在 STAMBP 缺乏症发病机制中的核心作用,并提供了临床前证据,证明产后基因替代是治疗该病的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信