The complex molecular epileptogenesis landscape of glioblastoma.

IF 11.7 1区 医学 Q1 CELL BIOLOGY
Victoria Soeung, Ralph B Puchalski, Jeffrey L Noebels
{"title":"The complex molecular epileptogenesis landscape of glioblastoma.","authors":"Victoria Soeung, Ralph B Puchalski, Jeffrey L Noebels","doi":"10.1016/j.xcrm.2024.101691","DOIUrl":null,"url":null,"abstract":"<p><p>The cortical microenvironment surrounding malignant glioblastoma is a source of depolarizing crosstalk favoring hyperexcitability, tumor expansion, and immune evasion. Neosynaptogenesis, excess glutamate, and altered intrinsic membrane currents contribute to excitability dyshomeostasis, yet only half of the cases develop seizures, suggesting that tumor and host genomics, along with location, rather than mass effect, play a critical role. We analyzed the spatial contours and expression of 358 clinically validated human epilepsy genes in the human glioblastoma transcriptome compared to non-tumor adult and developing cortex datasets. Nearly half, including dosage-sensitive genes whose expression levels are securely linked to monogenic epilepsy, are strikingly enriched and aberrantly regulated at the leading edge, supporting a complex epistatic basis for peritumoral epileptogenesis. Surround hyperexcitability induced by complex patterns of proepileptic gene expression may explain the limited efficacy of narrowly targeted antiseizure medicines and the persistence of epilepsy following tumor resection and clarify why not all brain tumors provoke seizures.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101691","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The cortical microenvironment surrounding malignant glioblastoma is a source of depolarizing crosstalk favoring hyperexcitability, tumor expansion, and immune evasion. Neosynaptogenesis, excess glutamate, and altered intrinsic membrane currents contribute to excitability dyshomeostasis, yet only half of the cases develop seizures, suggesting that tumor and host genomics, along with location, rather than mass effect, play a critical role. We analyzed the spatial contours and expression of 358 clinically validated human epilepsy genes in the human glioblastoma transcriptome compared to non-tumor adult and developing cortex datasets. Nearly half, including dosage-sensitive genes whose expression levels are securely linked to monogenic epilepsy, are strikingly enriched and aberrantly regulated at the leading edge, supporting a complex epistatic basis for peritumoral epileptogenesis. Surround hyperexcitability induced by complex patterns of proepileptic gene expression may explain the limited efficacy of narrowly targeted antiseizure medicines and the persistence of epilepsy following tumor resection and clarify why not all brain tumors provoke seizures.

Abstract Image

胶质母细胞瘤复杂的分子致痫结构。
恶性胶质母细胞瘤周围的皮质微环境是去极化串扰的源头,有利于兴奋性过高、肿瘤扩张和免疫逃避。新突触生成、过量谷氨酸和固有膜电流的改变导致了兴奋性失调,但只有一半的病例会出现癫痫发作,这表明肿瘤和宿主基因组学以及位置而不是质量效应起着关键作用。我们分析了人类胶质母细胞瘤转录组中 358 个经临床验证的人类癫痫基因的空间轮廓和表达,并与非肿瘤的成人和发育中的皮层数据集进行了比较。近一半的基因,包括其表达水平与单基因癫痫密切相关的剂量敏感基因,在前缘显著富集并受到异常调控,这支持了瘤周癫痫发生的复杂表观基础。由复杂的促癫痫基因表达模式所诱导的周围过度兴奋可能解释了狭义靶向抗癫痫药物的有限疗效以及肿瘤切除后癫痫持续存在的原因,并澄清了为什么并非所有脑肿瘤都会引发癫痫发作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信