Huimei Lu , Yuan Wang , Shipra Chaudhary , Varshita Balaga , Hua Ke , Fuqian Shi , Jingmei Liu , Yanying Huo , Peter J. Romanienko , Bing Xia , Subhajyoti De , Chang S. Chan , Zhiyuan Shen
{"title":"Medulloblastomas Initiated by Homologous Recombination Defects in Mice","authors":"Huimei Lu , Yuan Wang , Shipra Chaudhary , Varshita Balaga , Hua Ke , Fuqian Shi , Jingmei Liu , Yanying Huo , Peter J. Romanienko , Bing Xia , Subhajyoti De , Chang S. Chan , Zhiyuan Shen","doi":"10.1016/j.ajpath.2024.07.018","DOIUrl":null,"url":null,"abstract":"<div><div>Germline mutations of homologous-recombination (HR) genes are among the top contributors to medulloblastomas. A significant portion of human medulloblastomas exhibit genomic signatures of HR defects. Whether ablation of <em>Brca2</em> and <em>Palb2</em>, and their related <em>Brca1</em> and <em>Bccip</em> genes, in the mouse brain can differentially initiate medulloblastomas was explored here. Conditional knockout mouse models of these HR genes and a conditional knockdown of <em>Bccip</em> (<em>shBccip-KD</em>) were established. Deletion of any of these genes led to microcephaly and neurologic defects, with <em>Brca1</em><sup><em>–</em></sup> and <em>Bccip</em><sup><em>–</em></sup> producing the worst defects. <em>Trp53</em> co-deletion significantly rescued the microcephaly with <em>Brca1</em>, <em>Palb2</em>, and <em>Brca2</em> deficiency but exhibited limited impact on <em>Bccip</em><sup>–</sup> mice. For the first time, inactivation of either <em>Brca1</em> or <em>Palb2</em> with <em>Trp53</em> was found to induce medulloblastomas. Despite <em>shBccip-CKD</em> being highly penetrative, <em>Bccip/Trp53</em> deletions failed to induce medulloblastomas. The tumors displayed diverse immunohistochemical features and chromosome copy number variation. Although there were widespread up-regulations of cell proliferative pathways, most of the tumors expressed biomarkers of the sonic hedgehog subgroup. The medulloblastomas developed from <em>Brca1</em><sup><em>–</em></sup><em>, Palb2</em><sup><em>–</em></sup><em>,</em> and <em>Brca2</em><sup>–</sup> mice were highly sensitive to a poly (ADP-ribose) polymerase inhibitor but not the ones from <em>shBccip-CKD</em> mice. These models recapitulate the spontaneous medulloblastoma development with high penetrance and a narrow time window, providing ideal platforms to test therapeutic agents with the ability to differentiate HR-defective and HR-proficient tumors.</div></div>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":"194 11","pages":"Pages 2007-2022"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0002944024002943","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Germline mutations of homologous-recombination (HR) genes are among the top contributors to medulloblastomas. A significant portion of human medulloblastomas exhibit genomic signatures of HR defects. Whether ablation of Brca2 and Palb2, and their related Brca1 and Bccip genes, in the mouse brain can differentially initiate medulloblastomas was explored here. Conditional knockout mouse models of these HR genes and a conditional knockdown of Bccip (shBccip-KD) were established. Deletion of any of these genes led to microcephaly and neurologic defects, with Brca1– and Bccip– producing the worst defects. Trp53 co-deletion significantly rescued the microcephaly with Brca1, Palb2, and Brca2 deficiency but exhibited limited impact on Bccip– mice. For the first time, inactivation of either Brca1 or Palb2 with Trp53 was found to induce medulloblastomas. Despite shBccip-CKD being highly penetrative, Bccip/Trp53 deletions failed to induce medulloblastomas. The tumors displayed diverse immunohistochemical features and chromosome copy number variation. Although there were widespread up-regulations of cell proliferative pathways, most of the tumors expressed biomarkers of the sonic hedgehog subgroup. The medulloblastomas developed from Brca1–, Palb2–, and Brca2– mice were highly sensitive to a poly (ADP-ribose) polymerase inhibitor but not the ones from shBccip-CKD mice. These models recapitulate the spontaneous medulloblastoma development with high penetrance and a narrow time window, providing ideal platforms to test therapeutic agents with the ability to differentiate HR-defective and HR-proficient tumors.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.