Parallel metabolic pathway engineering for aerobic 1,2-propanediol production in Escherichia coli

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Daisuke Nonaka, Yuuki Hirata, Mayumi Kishida, Ayana Mori, Ryosuke Fujiwara, Akihiko Kondo, Yutaro Mori, Shuhei Noda, Tsutomu Tanaka
{"title":"Parallel metabolic pathway engineering for aerobic 1,2-propanediol production in Escherichia coli","authors":"Daisuke Nonaka,&nbsp;Yuuki Hirata,&nbsp;Mayumi Kishida,&nbsp;Ayana Mori,&nbsp;Ryosuke Fujiwara,&nbsp;Akihiko Kondo,&nbsp;Yutaro Mori,&nbsp;Shuhei Noda,&nbsp;Tsutomu Tanaka","doi":"10.1002/biot.202400210","DOIUrl":null,"url":null,"abstract":"<p>The demand for the essential commodity chemical 1,2-propanediol (1,2-PDO) is on the rise, as its microbial production has emerged as a promising method for a sustainable chemical supply. However, the reliance of 1,2-PDO production in <i>Escherichia coli</i> on anaerobic conditions, as enhancing cell growth to augment precursor availability remains a substantial challenge. This study presents glucose-based aerobic production of 1,2-PDO, with xylose utilization facilitating cell growth. An engineered strain was constructed capable of exclusively producing 1,2-PDO from glucose while utilizing xylose to support cell growth. This was accomplished by deleting the <i>gloA</i>, <i>eno</i>, <i>eda</i>, <i>sdaA</i>, <i>sdaB</i>, and <i>tdcG</i> genes for 1,2-PDO production from glucose and introducing the Weimberg pathway for cell growth using xylose. Enhanced 1,2-PDO production was achieved via <i>yagF</i> overexpression and disruption of the <i>ghrA</i> gene involved in the 1,2-PDO-competing pathway. The resultant strain, PD72, produced 2.48 ± 0.15 g L<sup>−1</sup> 1,2-PDO with a 0.27 ± 0.02 g g<sup>−1</sup>-glucose yield after 72 h cultivation. Overall, this study demonstrates aerobic 1,2-PDO synthesis through the isolation of the 1,2-PDO synthetic pathway from the tricarboxylic acid cycle.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400210","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for the essential commodity chemical 1,2-propanediol (1,2-PDO) is on the rise, as its microbial production has emerged as a promising method for a sustainable chemical supply. However, the reliance of 1,2-PDO production in Escherichia coli on anaerobic conditions, as enhancing cell growth to augment precursor availability remains a substantial challenge. This study presents glucose-based aerobic production of 1,2-PDO, with xylose utilization facilitating cell growth. An engineered strain was constructed capable of exclusively producing 1,2-PDO from glucose while utilizing xylose to support cell growth. This was accomplished by deleting the gloA, eno, eda, sdaA, sdaB, and tdcG genes for 1,2-PDO production from glucose and introducing the Weimberg pathway for cell growth using xylose. Enhanced 1,2-PDO production was achieved via yagF overexpression and disruption of the ghrA gene involved in the 1,2-PDO-competing pathway. The resultant strain, PD72, produced 2.48 ± 0.15 g L−1 1,2-PDO with a 0.27 ± 0.02 g g−1-glucose yield after 72 h cultivation. Overall, this study demonstrates aerobic 1,2-PDO synthesis through the isolation of the 1,2-PDO synthetic pathway from the tricarboxylic acid cycle.

Abstract Image

在大肠杆菌中进行平行代谢途径工程,以生产有氧 1,2-丙二醇。
对基本商品化学品 1,2-丙二醇(1,2-PDO)的需求在不断增加,因为微生物生产已成为可持续化学品供应的一种有前途的方法。然而,在大肠杆菌中生产 1,2-丙二醇需要依赖厌氧条件,因为提高细胞生长以增加前体供应仍然是一个巨大的挑战。本研究介绍了基于葡萄糖的 1,2-PDO有氧生产,利用木糖促进细胞生长。研究人员构建了一种工程菌株,该菌株能够完全利用葡萄糖生产 1,2-PDO,同时利用木糖支持细胞生长。这是通过删除从葡萄糖生产 1,2-PDO的 gloA、eno、eda、sdaA、sdaB 和 tdcG 基因,并引入利用木糖促进细胞生长的 Weimberg 途径实现的。通过过量表达 yagF 和破坏参与 1,2-PDO 竞争途径的 ghrA 基因,提高了 1,2-PDO 的产量。由此产生的菌株 PD72 在培养 72 小时后产生了 2.48 ± 0.15 g L-1 1,2-PDO,葡萄糖产量为 0.27 ± 0.02 g g-1。总之,这项研究通过从三羧酸循环中分离出 1,2-PDO 合成途径,证明了有氧 1,2-PDO 合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信