{"title":"Damage Scenario Prediction for Concrete Bridge Columns Using Deep Generative Networks","authors":"Tzu-Kang Lin, Hao-Tun Chang, Ping-Hsiung Wang, Rih-Teng Wu, Ahmed Abdalfatah Saddek, Kuo-Chun Chang, Dzong-Chwang Dzeng","doi":"10.1155/2024/5526537","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Bridges in areas with high seismic risk are constantly exposed to earthquake threats. Therefore, comprehensive bridge damage assessments are essential for postearthquake retrofitting and safety assurance. However, traditional methods of assessing damage and collecting data are time-consuming and labor-intensive. To address this issue, this study proposes a deep generative adversarial network (GAN)-based approach to predict the surface damage patterns of bridge columns. Using visual patterns from experimental tests, the proposed approach can generate surface damage to the synthetic column, such as cracks and concrete splinters. The study also investigates the effects of different data representation schemes, such as grayscale, black and white, and obstacle-removed images, and uses the corresponding damage indices as additional constraints to improve network training. The results show that the proposed approach can offer a reliable reference for bridge engineers to evaluate and repair seismic-induced bridge damage, which can significantly lower the cost of disaster reconnaissance.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5526537","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5526537","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bridges in areas with high seismic risk are constantly exposed to earthquake threats. Therefore, comprehensive bridge damage assessments are essential for postearthquake retrofitting and safety assurance. However, traditional methods of assessing damage and collecting data are time-consuming and labor-intensive. To address this issue, this study proposes a deep generative adversarial network (GAN)-based approach to predict the surface damage patterns of bridge columns. Using visual patterns from experimental tests, the proposed approach can generate surface damage to the synthetic column, such as cracks and concrete splinters. The study also investigates the effects of different data representation schemes, such as grayscale, black and white, and obstacle-removed images, and uses the corresponding damage indices as additional constraints to improve network training. The results show that the proposed approach can offer a reliable reference for bridge engineers to evaluate and repair seismic-induced bridge damage, which can significantly lower the cost of disaster reconnaissance.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.