{"title":"Effect of sintering temperature on multiferroic properties of Mg-doped Bismuth Ferrite","authors":"Priya Prajapati, Kirti Bera, Renuka Pithiya, Devang Pandya, Akshay Lila, Thaker Amisha, Surojit Bera, Jahnviba Zala, Gautam Patadiya, P.V. Kanjariya","doi":"10.1016/j.ssc.2024.115656","DOIUrl":null,"url":null,"abstract":"<div><p>The research findings from a thorough examination of the impact of sintering temperature are presented in this publication on structural, ferroelectric, ferromagnetic and dielectric properties of Mg-doped Bismuth Ferrite. Bi<sub>0.88</sub>Mg<sub>0.12</sub>FeO<sub>3</sub> (BMFO) was synthesized using a solid-state reaction technique and sintered at three different temperatures: 750 °C, 800 °C and 830 °C. Structural analysis was performed using Rietveld refinement of XRD data, which confirms the presence of perovskite phase with rhombohedral structure in all samples and also changes in lattice parameters that result from sintering temperature changes. The average crystalline size as well as the lattice strain are calculated using the Williamson-Hall method. The loss tangent and dielectric constant have been examined as a function of frequency revealing a considerable improvement in dielectric properties. SEM analysis was performed to identify the microstructural property of the samples. Ferroelectric properties were studied using a P-E loop which confirms the enhancement in the ferroelectric property as sintering temperature increases. The improvement in the multiferroic nature will be discussed in light of the sintering temperature effect on Mg-doped Bismuth Ferrite.</p></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"392 ","pages":"Article 115656"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824002333","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The research findings from a thorough examination of the impact of sintering temperature are presented in this publication on structural, ferroelectric, ferromagnetic and dielectric properties of Mg-doped Bismuth Ferrite. Bi0.88Mg0.12FeO3 (BMFO) was synthesized using a solid-state reaction technique and sintered at three different temperatures: 750 °C, 800 °C and 830 °C. Structural analysis was performed using Rietveld refinement of XRD data, which confirms the presence of perovskite phase with rhombohedral structure in all samples and also changes in lattice parameters that result from sintering temperature changes. The average crystalline size as well as the lattice strain are calculated using the Williamson-Hall method. The loss tangent and dielectric constant have been examined as a function of frequency revealing a considerable improvement in dielectric properties. SEM analysis was performed to identify the microstructural property of the samples. Ferroelectric properties were studied using a P-E loop which confirms the enhancement in the ferroelectric property as sintering temperature increases. The improvement in the multiferroic nature will be discussed in light of the sintering temperature effect on Mg-doped Bismuth Ferrite.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.