{"title":"A piecewise extreme learning machine for interface problems","authors":"Yijie Liang, Qinghui Zhang, Shaojie Zeng","doi":"10.1016/j.matcom.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning methods have been developed to solve interface problems, benefiting from meshless features and the ability to approximate complex interfaces. However, existing deep neural network (DNN) methods for usual partial differential equations encounter accuracy limitations where after reaching a certain error level, further increases in network width, depth, and iteration steps do not enhance accuracy. This limitation becomes more notable in interface problems where the solution and its gradients may exhibit significant jumps across the interface. To improve accuracy, we propose a piecewise extreme learning machine (PELM) for addressing interface problems. An ELM is a type of shallow neural network where weight/bias coefficients in activation functions are randomly sampled and then fixed instead of being updated during the training process. Considering the solution jumps across the interface, we use a PELM scheme — setting one ELM function for each side of the interface. The two ELM functions are coupled using the interface conditions. Our numerical experiments demonstrate that the proposed PELM for the interface problem significantly improves the accuracy compared to conventional DNN solvers. The advantage of new method is shown for addressing interface problems that feature complex interface curves.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003112","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning methods have been developed to solve interface problems, benefiting from meshless features and the ability to approximate complex interfaces. However, existing deep neural network (DNN) methods for usual partial differential equations encounter accuracy limitations where after reaching a certain error level, further increases in network width, depth, and iteration steps do not enhance accuracy. This limitation becomes more notable in interface problems where the solution and its gradients may exhibit significant jumps across the interface. To improve accuracy, we propose a piecewise extreme learning machine (PELM) for addressing interface problems. An ELM is a type of shallow neural network where weight/bias coefficients in activation functions are randomly sampled and then fixed instead of being updated during the training process. Considering the solution jumps across the interface, we use a PELM scheme — setting one ELM function for each side of the interface. The two ELM functions are coupled using the interface conditions. Our numerical experiments demonstrate that the proposed PELM for the interface problem significantly improves the accuracy compared to conventional DNN solvers. The advantage of new method is shown for addressing interface problems that feature complex interface curves.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.