A mortar segment-to-segment frictional contact approach in material point method

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"A mortar segment-to-segment frictional contact approach in material point method","authors":"","doi":"10.1016/j.cma.2024.117294","DOIUrl":null,"url":null,"abstract":"<div><p>Handling contact problems in the Material Point Method (MPM) has long been a challenge. Traditional grid-based contact approaches often face issues with mesh dependency, while material point-based methods can be computationally intensive. To address these challenges, this study develops a novel mortar segment-to-segment frictional contact approach for MPM. We first introduce boundary vertices and propose an innovative kinematic update scheme for precise representation of the boundaries of the continuum media and their continuously evolving contact normals throughout the contact process. Then, we construct a weak form of contact constraints based on the mortar method to facilitate a stable segment-to-segment contact detection. To rigorously ensure the non-penetration condition, the energetic barrier method is further adopted and implemented in MPM for enforcing the contact constraints. The proposed kinematic update scheme for boundary vertices is first verified through a cantilever beam benchmark test. The verified framework is further examined through a wide range of contact scenarios, including rolling, sliding, collision of two rings, and multi-body contacts, in both small and finite deformations. The simulation results are thoroughly discussed, highlighting the significant improvements in accuracy and versatility. Potential limitations of the proposed method are also examined.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524005504","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Handling contact problems in the Material Point Method (MPM) has long been a challenge. Traditional grid-based contact approaches often face issues with mesh dependency, while material point-based methods can be computationally intensive. To address these challenges, this study develops a novel mortar segment-to-segment frictional contact approach for MPM. We first introduce boundary vertices and propose an innovative kinematic update scheme for precise representation of the boundaries of the continuum media and their continuously evolving contact normals throughout the contact process. Then, we construct a weak form of contact constraints based on the mortar method to facilitate a stable segment-to-segment contact detection. To rigorously ensure the non-penetration condition, the energetic barrier method is further adopted and implemented in MPM for enforcing the contact constraints. The proposed kinematic update scheme for boundary vertices is first verified through a cantilever beam benchmark test. The verified framework is further examined through a wide range of contact scenarios, including rolling, sliding, collision of two rings, and multi-body contacts, in both small and finite deformations. The simulation results are thoroughly discussed, highlighting the significant improvements in accuracy and versatility. Potential limitations of the proposed method are also examined.

材料点法中的砂浆段对段摩擦接触方法
用材料点法(MPM)处理接触问题一直是个难题。传统的基于网格的接触方法经常面临网格依赖性问题,而基于材料点的方法计算量大。为了应对这些挑战,本研究为 MPM 开发了一种新颖的砂浆段对段摩擦接触方法。我们首先引入了边界顶点,并提出了一种创新的运动学更新方案,用于精确表示连续介质的边界及其在整个接触过程中不断变化的接触法线。然后,我们基于灰泥法构建了一种弱接触约束形式,以促进稳定的段对段接触检测。为了严格确保非穿透条件,我们进一步采用了能量障碍法,并在 MPM 中实施了接触约束。提出的边界顶点运动学更新方案首先通过悬臂梁基准测试进行了验证。验证后的框架通过各种接触场景进行了进一步检验,包括小变形和有限变形下的滚动、滑动、两环碰撞和多体接触。对模拟结果进行了深入讨论,强调了在精度和多功能性方面的显著改进。此外,还研究了拟议方法的潜在局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信