Direct simulation of vortex dynamics of multi-cellular Taylor–Green vortex by pseudo-spectral method

IF 2.5 3区 工程技术 Q2 MECHANICS
{"title":"Direct simulation of vortex dynamics of multi-cellular Taylor–Green vortex by pseudo-spectral method","authors":"","doi":"10.1016/j.euromechflu.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the long-time vorticity dynamics of the multi-cellular configurations of the two-dimensional (2D) Taylor–Green vortex (TGV). The pseudo-spectral method is used to solve the incompressible Navier–Stokes equation to analyze the evolution of TGV arrays. The focus is on understanding vortex interactions leading to vortex filamentation and stripping (forward cascade) during primary instability; merger and reconnection (inverse cascade) among the TGV vortical cells subsequently. Here, consideration of multiple cells avoids imposing symmetries at the smallest periodic length scale, and thereby affecting disturbance growth. The initial condition is taken from the analytic solution of the TGV, and Fourier spectral method is employed to track the interactions of the initial doubly-periodic vortices. The full sequence of evolution from one equilibrium state to another for the TGV is not addressed before, as reported here to fill this gap for multiple TGV cells in both directions. By studying various vortical interactions in the ensemble, here we report the enstrophy and energy spectra for different number of TGV cells. This is crucial in understanding the very long-time evolution process, at post-critical Reynolds numbers for the 2D TGV problem in the same physical domain, (<span><math><mrow><mn>0</mn><mo>≤</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≤</mo><mn>4</mn><mi>π</mi></mrow></math></span>) having <span><math><mrow><mo>(</mo><mn>4</mn><mo>×</mo><mn>4</mn><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mn>6</mn><mo>×</mo><mn>6</mn><mo>)</mo></mrow></math></span> cells. Reported results show the evolution of these vortical cells from original configurations to finally a <span><math><mrow><mo>(</mo><mn>1</mn><mo>×</mo><mn>1</mn><mo>)</mo></mrow></math></span> vortical cells — the universal state not demonstrated before.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001183","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the long-time vorticity dynamics of the multi-cellular configurations of the two-dimensional (2D) Taylor–Green vortex (TGV). The pseudo-spectral method is used to solve the incompressible Navier–Stokes equation to analyze the evolution of TGV arrays. The focus is on understanding vortex interactions leading to vortex filamentation and stripping (forward cascade) during primary instability; merger and reconnection (inverse cascade) among the TGV vortical cells subsequently. Here, consideration of multiple cells avoids imposing symmetries at the smallest periodic length scale, and thereby affecting disturbance growth. The initial condition is taken from the analytic solution of the TGV, and Fourier spectral method is employed to track the interactions of the initial doubly-periodic vortices. The full sequence of evolution from one equilibrium state to another for the TGV is not addressed before, as reported here to fill this gap for multiple TGV cells in both directions. By studying various vortical interactions in the ensemble, here we report the enstrophy and energy spectra for different number of TGV cells. This is crucial in understanding the very long-time evolution process, at post-critical Reynolds numbers for the 2D TGV problem in the same physical domain, (0(x,y)4π) having (4×4) and (6×6) cells. Reported results show the evolution of these vortical cells from original configurations to finally a (1×1) vortical cells — the universal state not demonstrated before.

用伪谱分析方法直接模拟多细胞泰勒-格林涡旋动力学
本研究探讨了二维(2D)泰勒-格林涡(TGV)多细胞构型的长时间涡度动力学。采用伪谱法求解不可压缩纳维-斯托克斯方程,分析 TGV 阵列的演变。重点是理解涡旋相互作用导致的涡旋丝状化和初级不稳定性期间的剥离(正向级联),以及随后 TGV 涡旋室之间的合并和再连接(逆向级联)。在这里,考虑多个单元可避免在最小周期长度尺度上施加对称性,从而影响扰动的增长。初始条件取自 TGV 的解析解,并采用傅立叶频谱法跟踪初始双周期涡旋的相互作用。TGV 从一个平衡态到另一个平衡态的完整演化序列以前未曾涉及,本报告填补了这一空白,研究了两个方向上的多个 TGV 单元。通过研究集合中的各种涡旋相互作用,我们在此报告了不同数量 TGV 单元的熵和能谱。这对于理解同一物理域(0≤(x,y)≤4π)中具有 (4×4) 和 (6×6) 单元的二维 TGV 问题在临界后雷诺数下的长时间演化过程至关重要。报告结果显示了这些涡旋单元从原始配置到最终形成 (1×1) 涡旋单元的演变过程--这是之前未曾展示过的普遍状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信