{"title":"Smooth Ordered Weighted Averaging operators","authors":"","doi":"10.1016/j.ins.2024.121343","DOIUrl":null,"url":null,"abstract":"<div><p>The study demonstrates the application of OWA operators to binary and multiclass classification problems and seeks a way to improve classification accuracy using smoothing methods. OWA operators are used to aggregate class membership probabilities obtained from individual classifiers. Smoothing methods inspired by Newton-Cotes quadratures are applied before the aggregation step to improve the quality of the final results. Moreover, several sets of weights are used for OWA operators, including sets of weights based on the accuracy of individual classifiers. The experiments are conducted on 20 datasets, from which 7 are designed for binary classification and the rest are for multiclass classification. A comparison of the average accuracy for different sets of weights is shown. On the basis of experimental results, smoothing methods that significantly improve classification accuracy are identified.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002002552401257X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The study demonstrates the application of OWA operators to binary and multiclass classification problems and seeks a way to improve classification accuracy using smoothing methods. OWA operators are used to aggregate class membership probabilities obtained from individual classifiers. Smoothing methods inspired by Newton-Cotes quadratures are applied before the aggregation step to improve the quality of the final results. Moreover, several sets of weights are used for OWA operators, including sets of weights based on the accuracy of individual classifiers. The experiments are conducted on 20 datasets, from which 7 are designed for binary classification and the rest are for multiclass classification. A comparison of the average accuracy for different sets of weights is shown. On the basis of experimental results, smoothing methods that significantly improve classification accuracy are identified.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.