Online identification of pharmacodynamic parameters for closed-loop anesthesia with model predictive control

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Bob Aubouin–Pairault , Mirko Fiacchini , Thao Dang
{"title":"Online identification of pharmacodynamic parameters for closed-loop anesthesia with model predictive control","authors":"Bob Aubouin–Pairault ,&nbsp;Mirko Fiacchini ,&nbsp;Thao Dang","doi":"10.1016/j.compchemeng.2024.108837","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a controller is proposed to automate the injection of propofol and remifentanil during general anesthesia using bispectral index (BIS) measurement. To handle the parameter uncertainties due to inter- and intra-patient variability, an extended estimator is used coupled with a Model Predictive Controller (MPC). Two methods are considered for the estimator: the first one is a multiple extended Kalman filter (MEKF), and the second is a moving horizon estimator (MHE). The state and parameter estimations are then used in the MPC to compute the next drug rates. The methods are compared with a PID from the literature. The robustness of the controller is evaluated using Monte-Carlo simulations on a wide population, introducing uncertainties in all parts of the model. Results both on the induction and maintenance phases of anesthesia show the potential interest in using this adaptive method to handle parameter uncertainties.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"191 ","pages":"Article 108837"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002552","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a controller is proposed to automate the injection of propofol and remifentanil during general anesthesia using bispectral index (BIS) measurement. To handle the parameter uncertainties due to inter- and intra-patient variability, an extended estimator is used coupled with a Model Predictive Controller (MPC). Two methods are considered for the estimator: the first one is a multiple extended Kalman filter (MEKF), and the second is a moving horizon estimator (MHE). The state and parameter estimations are then used in the MPC to compute the next drug rates. The methods are compared with a PID from the literature. The robustness of the controller is evaluated using Monte-Carlo simulations on a wide population, introducing uncertainties in all parts of the model. Results both on the induction and maintenance phases of anesthesia show the potential interest in using this adaptive method to handle parameter uncertainties.

利用模型预测控制在线识别闭环麻醉的药效学参数
本文提出了一种控制器,利用双谱指数(BIS)测量在全身麻醉期间自动注射异丙酚和瑞芬太尼。为了处理患者之间和患者内部变异引起的参数不确定性,使用了一种与模型预测控制器(MPC)相结合的扩展估计器。估计器采用了两种方法:第一种是多重扩展卡尔曼滤波器(MEKF),第二种是移动水平估计器(MHE)。然后在 MPC 中使用状态和参数估计来计算下一个药量。这些方法与文献中的 PID 进行了比较。在模型的所有部分都引入了不确定性的情况下,使用 Monte-Carlo 模拟对广泛的人群进行了控制器鲁棒性评估。麻醉诱导和维持阶段的结果表明,使用这种自适应方法处理参数不确定性具有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信