{"title":"Numerical simulation of deep-water wave breaking using RANS: Comparison with experiments","authors":"","doi":"10.1016/j.euromechflu.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Wave breaking is a multifaceted physical phenomenon that is not fully understood and remains challenging to model. An effective method for investigating wave breaking involves utilising the two-phase Reynolds-averaged Navier–Stokes (RANS) equations to directly simulate breaking waves. In this study, we apply a RANS model with an adaptively refined mesh to simulate breaking waves in deep water using the stabilised RANS model proposed by Larsen and Fuhrman. This approach enables a more efficient simulation of the physics of breaking waves compared to Direct Numerical Simulations, as it places less stringent demands on grid resolution. Our findings demonstrate that the RANS model compares well with deep water wave breaking experiments in terms of surface elevation. We also give estimates of the breaking strength parameter of our RANS simulations and compared them with the literature.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624001171/pdfft?md5=1253dc6f0b798143b233d424bd1fb24d&pid=1-s2.0-S0997754624001171-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001171","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Wave breaking is a multifaceted physical phenomenon that is not fully understood and remains challenging to model. An effective method for investigating wave breaking involves utilising the two-phase Reynolds-averaged Navier–Stokes (RANS) equations to directly simulate breaking waves. In this study, we apply a RANS model with an adaptively refined mesh to simulate breaking waves in deep water using the stabilised RANS model proposed by Larsen and Fuhrman. This approach enables a more efficient simulation of the physics of breaking waves compared to Direct Numerical Simulations, as it places less stringent demands on grid resolution. Our findings demonstrate that the RANS model compares well with deep water wave breaking experiments in terms of surface elevation. We also give estimates of the breaking strength parameter of our RANS simulations and compared them with the literature.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.