{"title":"Investigating the potential of NH2-Functionalized MIL-53(Fe) nanoparticle as a carrier for 5-fluorouracil through molecular dynamics simulation","authors":"","doi":"10.1016/j.matchemphys.2024.129831","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the role of the NH<sub>2</sub>-functionalized MIL-53(Fe) nanoparticle as a carrier for the anti-cancer drug 5-fluorouracil (5-Fu) through molecular dynamics (MD) simulation. The Atom in Molecules (AIM) method was used to determine the interaction type between 5-Fu and NH<sub>2</sub>-MIL-53(Fe). The Steered Molecular Dynamics (SMD) approach was employed to calculate the free energy of drug encapsulation. The simulation included the NH<sub>2</sub>-MIL-53(Fe) nanoparticle containing 5-FU molecules and water molecules at different temperatures and 1 atm pressure. The properties analyzed included density, radial distribution functions, displacement, diffusion, and binding energy of the drug with NH<sub>2</sub>-MIL-55(Fe). It is shown that the drug was encapsulated in the framework channels and the variation of density of the system with temperature in the presence of nanoparticles decreased. The drug's mean square displacement, total self-diffusion coefficient, and diffusion coefficient in channel direction increased with time as temperature rose. The drug was aligned to have its oxygen atoms towards the metal nodes of the framework. However, The nitrogen atom of the amine functional group in NH2-MIL-53(Fe) interacts more with the F atom of 5-Fu which shows the effect of this functional group on the adsorption of the 5-Fu. The drug's adsorption percentage increased from 298 K to 328 K. The calculated binding energy increased with temperatures and was desirable as it countered the drug's repulsive forces with atoms of NH<sub>2</sub>-MIL-53(Fe). The results of the molecular docking simulation confirmed MD simulation.</p></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424009593","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the role of the NH2-functionalized MIL-53(Fe) nanoparticle as a carrier for the anti-cancer drug 5-fluorouracil (5-Fu) through molecular dynamics (MD) simulation. The Atom in Molecules (AIM) method was used to determine the interaction type between 5-Fu and NH2-MIL-53(Fe). The Steered Molecular Dynamics (SMD) approach was employed to calculate the free energy of drug encapsulation. The simulation included the NH2-MIL-53(Fe) nanoparticle containing 5-FU molecules and water molecules at different temperatures and 1 atm pressure. The properties analyzed included density, radial distribution functions, displacement, diffusion, and binding energy of the drug with NH2-MIL-55(Fe). It is shown that the drug was encapsulated in the framework channels and the variation of density of the system with temperature in the presence of nanoparticles decreased. The drug's mean square displacement, total self-diffusion coefficient, and diffusion coefficient in channel direction increased with time as temperature rose. The drug was aligned to have its oxygen atoms towards the metal nodes of the framework. However, The nitrogen atom of the amine functional group in NH2-MIL-53(Fe) interacts more with the F atom of 5-Fu which shows the effect of this functional group on the adsorption of the 5-Fu. The drug's adsorption percentage increased from 298 K to 328 K. The calculated binding energy increased with temperatures and was desirable as it countered the drug's repulsive forces with atoms of NH2-MIL-53(Fe). The results of the molecular docking simulation confirmed MD simulation.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.