Outcome prediction for adult mechanically ventilated patients using machine learning models and comparison with conventional statistical methods: A single-centre retrospective study
Wei Jun Dan Ong , Chun Hung How , Woon Hean Keenan Chong , Faheem Ahmed Khan , Kee Yuan Ngiam , Amit Kansal
{"title":"Outcome prediction for adult mechanically ventilated patients using machine learning models and comparison with conventional statistical methods: A single-centre retrospective study","authors":"Wei Jun Dan Ong , Chun Hung How , Woon Hean Keenan Chong , Faheem Ahmed Khan , Kee Yuan Ngiam , Amit Kansal","doi":"10.1016/j.ibmed.2024.100165","DOIUrl":null,"url":null,"abstract":"<div><p>In this retrospective single-centre study spanning five years (2016–2021) and involving 2368 adult Intensive Care Unit (ICU) patients requiring over 4 h of mechanical ventilation (MV) in a tertiary care hospital, we investigated the feasibility and accuracy of using machine learning (ML) models in predicting outcomes post-ICU discharge compared to conventional statistical methods (CSM). The study aimed to identify associated risk factors impacting these outcomes. Poor outcomes, defined as ICU readmission, mortality, and prolonged hospital stays, affected 40.2 % of the discharged MV patients. The Extreme Gradient Boost (XGBoost) ML model showed superior performance compared to CSM (Area under the receiver operating characteristic curve: 0.693 vs. 0.667; p-value = 0.03). At 95 % specificity, XGBoost displayed enhanced sensitivity (30.6 % vs. 23.8 %) compared to CSM. Risk factors such as Glasgow Coma Score (GCS) and GCS best motor score at ICU discharge, MV duration, ICU length of stay, and Charlson Comorbidity Index were identified. While both ML and CSM exhibited moderate accuracy, the study suggests ML algorithms have the potential for better predictive capabilities and individual risk factor identification, potentially aiding in the improvement of patient outcomes by identifying high-risk patients requiring closer monitoring. Further validation in larger studies is necessary, but the study underscores the potential for real-time application of ML algorithms developed from the increasing availability of electronic medical records (EMR).</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100165"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521224000322/pdfft?md5=9b5e16fa3de6867cc99501f81f07c14a&pid=1-s2.0-S2666521224000322-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this retrospective single-centre study spanning five years (2016–2021) and involving 2368 adult Intensive Care Unit (ICU) patients requiring over 4 h of mechanical ventilation (MV) in a tertiary care hospital, we investigated the feasibility and accuracy of using machine learning (ML) models in predicting outcomes post-ICU discharge compared to conventional statistical methods (CSM). The study aimed to identify associated risk factors impacting these outcomes. Poor outcomes, defined as ICU readmission, mortality, and prolonged hospital stays, affected 40.2 % of the discharged MV patients. The Extreme Gradient Boost (XGBoost) ML model showed superior performance compared to CSM (Area under the receiver operating characteristic curve: 0.693 vs. 0.667; p-value = 0.03). At 95 % specificity, XGBoost displayed enhanced sensitivity (30.6 % vs. 23.8 %) compared to CSM. Risk factors such as Glasgow Coma Score (GCS) and GCS best motor score at ICU discharge, MV duration, ICU length of stay, and Charlson Comorbidity Index were identified. While both ML and CSM exhibited moderate accuracy, the study suggests ML algorithms have the potential for better predictive capabilities and individual risk factor identification, potentially aiding in the improvement of patient outcomes by identifying high-risk patients requiring closer monitoring. Further validation in larger studies is necessary, but the study underscores the potential for real-time application of ML algorithms developed from the increasing availability of electronic medical records (EMR).