DECNet: Left Atrial Pulmonary Vein Class Imbalance Classification Network.

GuoDong Zhang, WenWen Gu, TingYu Liang, YanLin Li, Wei Guo, ZhaoXuan Gong, RongHui Ju
{"title":"DECNet: Left Atrial Pulmonary Vein Class Imbalance Classification Network.","authors":"GuoDong Zhang, WenWen Gu, TingYu Liang, YanLin Li, Wei Guo, ZhaoXuan Gong, RongHui Ju","doi":"10.1007/s10278-024-01221-8","DOIUrl":null,"url":null,"abstract":"<p><p>In clinical practice, the anatomical classification of pulmonary veins plays a crucial role in the preoperative assessment of atrial fibrillation radiofrequency ablation surgery. Accurate classification of pulmonary vein anatomy assists physicians in selecting appropriate mapping electrodes and avoids causing pulmonary arterial hypertension. Due to the diverse and subtly different anatomical classifications of pulmonary veins, as well as the imbalance in data distribution, deep learning models often exhibit poor expression capability in extracting deep features, leading to misjudgments and affecting classification accuracy. Therefore, in order to solve the problem of unbalanced classification of left atrial pulmonary veins, this paper proposes a network integrating multi-scale feature-enhanced attention and dual-feature extraction classifiers, called DECNet. The multi-scale feature-enhanced attention utilizes multi-scale information to guide the reinforcement of deep features, generating channel weights and spatial weights to enhance the expression capability of deep features. The dual-feature extraction classifier assigns a fixed number of channels to each category, equally evaluating all categories, thus alleviating the learning bias and overfitting caused by data imbalance. By combining the two, the expression capability of deep features is strengthened, achieving accurate classification of left atrial pulmonary vein morphology and providing support for subsequent clinical treatment. The proposed method is evaluated on datasets provided by the People's Hospital of Liaoning Province and the publicly available DermaMNIST dataset, achieving average accuracies of 78.81% and 83.44%, respectively, demonstrating the effectiveness of the proposed approach.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01221-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical practice, the anatomical classification of pulmonary veins plays a crucial role in the preoperative assessment of atrial fibrillation radiofrequency ablation surgery. Accurate classification of pulmonary vein anatomy assists physicians in selecting appropriate mapping electrodes and avoids causing pulmonary arterial hypertension. Due to the diverse and subtly different anatomical classifications of pulmonary veins, as well as the imbalance in data distribution, deep learning models often exhibit poor expression capability in extracting deep features, leading to misjudgments and affecting classification accuracy. Therefore, in order to solve the problem of unbalanced classification of left atrial pulmonary veins, this paper proposes a network integrating multi-scale feature-enhanced attention and dual-feature extraction classifiers, called DECNet. The multi-scale feature-enhanced attention utilizes multi-scale information to guide the reinforcement of deep features, generating channel weights and spatial weights to enhance the expression capability of deep features. The dual-feature extraction classifier assigns a fixed number of channels to each category, equally evaluating all categories, thus alleviating the learning bias and overfitting caused by data imbalance. By combining the two, the expression capability of deep features is strengthened, achieving accurate classification of left atrial pulmonary vein morphology and providing support for subsequent clinical treatment. The proposed method is evaluated on datasets provided by the People's Hospital of Liaoning Province and the publicly available DermaMNIST dataset, achieving average accuracies of 78.81% and 83.44%, respectively, demonstrating the effectiveness of the proposed approach.

Abstract Image

DECNet:左心房肺静脉等级失衡分类网络。
在临床实践中,肺静脉的解剖学分类在心房颤动射频消融手术的术前评估中起着至关重要的作用。准确的肺静脉解剖学分类有助于医生选择合适的映射电极,避免引起肺动脉高压。由于肺静脉解剖分类的多样性和细微差别,以及数据分布的不平衡性,深度学习模型在提取深层特征时往往表现出较差的表达能力,导致误判,影响分类的准确性。因此,为了解决左房肺静脉分类不均衡的问题,本文提出了一种集成多尺度特征增强注意力和双特征提取分类器的网络,称为 DECNet。多尺度特征增强注意力利用多尺度信息指导深度特征的增强,生成通道权重和空间权重,增强深度特征的表达能力。双特征提取分类器为每个类别分配固定数量的通道,平等地评估所有类别,从而减轻了数据不平衡造成的学习偏差和过拟合。通过两者的结合,增强了深度特征的表达能力,实现了对左房肺静脉形态的准确分类,为后续临床治疗提供了支持。该方法在辽宁省人民医院提供的数据集和公开的DermaMNIST数据集上进行了评估,平均准确率分别达到78.81%和83.44%,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信