Quan Sun, Zhengchen He, Di Feng, Ranran Wei, Yingzi Zhang, Junli Ye, Lijun Chai, Juan Xu, Yunjiang Cheng, Qiang Xu, Xiuxin Deng
{"title":"The abscisic acid-responsive transcriptional regulatory module CsERF110-CsERF53 orchestrates citrus fruit coloration.","authors":"Quan Sun, Zhengchen He, Di Feng, Ranran Wei, Yingzi Zhang, Junli Ye, Lijun Chai, Juan Xu, Yunjiang Cheng, Qiang Xu, Xiuxin Deng","doi":"10.1016/j.xplc.2024.101065","DOIUrl":null,"url":null,"abstract":"<p><p>Carotenoid biosynthesis is closely associated with abscisic acid (ABA) during the ripening process of non-climacteric fruits, but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely unclear. Here, we identified two master regulators of ABA-mediated citrus fruit coloration, CsERF110 and CsERF53, which activate the expression of carotenoid metabolism genes (CsGGPPS, CsPSY, CsPDS, CsCRTISO, CsLCYB2, CsLCYE, CsHYD, CsZEP, and CsNCED2) to facilitate carotenoid accumulation. Further investigations showed that CsERF110 not only activates the expression of CsERF53 by binding to its promoter but also interacts with CsERF53 to form the transcriptional regulatory module CsERF110-CsERF53. We also discovered a positive feedback regulatory loop between the ABA signal and carotenoid metabolism regulated by the transcriptional regulatory module CsERF110-CsERF53. Our results reveal that the CsERF110-CsERF53 module responds to ABA signaling, thereby orchestrating citrus fruit coloration. Considering the importance of carotenoid content for citrus and many other carotenoid-rich crops, the revelation of molecular mechanisms that underlie ABA-mediated carotenoid biosynthesis in plants will facilitate the development of transgenic/gene-editing approaches, further contributing to improving the quality of citrus and other carotenoid-rich crops.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.101065","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carotenoid biosynthesis is closely associated with abscisic acid (ABA) during the ripening process of non-climacteric fruits, but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely unclear. Here, we identified two master regulators of ABA-mediated citrus fruit coloration, CsERF110 and CsERF53, which activate the expression of carotenoid metabolism genes (CsGGPPS, CsPSY, CsPDS, CsCRTISO, CsLCYB2, CsLCYE, CsHYD, CsZEP, and CsNCED2) to facilitate carotenoid accumulation. Further investigations showed that CsERF110 not only activates the expression of CsERF53 by binding to its promoter but also interacts with CsERF53 to form the transcriptional regulatory module CsERF110-CsERF53. We also discovered a positive feedback regulatory loop between the ABA signal and carotenoid metabolism regulated by the transcriptional regulatory module CsERF110-CsERF53. Our results reveal that the CsERF110-CsERF53 module responds to ABA signaling, thereby orchestrating citrus fruit coloration. Considering the importance of carotenoid content for citrus and many other carotenoid-rich crops, the revelation of molecular mechanisms that underlie ABA-mediated carotenoid biosynthesis in plants will facilitate the development of transgenic/gene-editing approaches, further contributing to improving the quality of citrus and other carotenoid-rich crops.
类胡萝卜素的生物合成与脱落酸(ABA)密切相关,但ABA信号传导与类胡萝卜素代谢之间的调控机制尚不清楚。在这里,我们发现了 ABA 介导的柑橘果实着色的两个主调节因子 CsERF110 和 CsERF53,它们激活类胡萝卜素代谢基因(CsGGPPS、CsPSY、CsPDS、CsCRTISO、CsLCYB2、CsLCYE、CsHYD、CsZEP 和 CsNCED2)的表达,促进类胡萝卜素的积累。进一步研究发现,CsERF110不仅通过与其启动子结合激活CsERF53的表达,还与CsERF53相互作用形成转录调控模块CsERF110-CsERF53。此外,我们发现 ABA 信号与类胡萝卜素代谢之间存在一个由转录调控模块 CsERF110-CsERF53 调控的正反馈调控环。我们的研究结果揭示了转录调控模块 CsERF110-CsERF53 对 ABA 信号的响应,从而协调了柑橘果实的着色。考虑到类胡萝卜素含量对柑橘和其他许多富含类胡萝卜素作物的重要性,揭示 ABA 介导植物类胡萝卜素生物合成的分子机制将促进转基因/基因编辑方法的发展,进一步有助于提高柑橘和其他富含类胡萝卜素作物的品质。
期刊介绍:
Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.