Lei Yang, Jiawen Shi, Mingyang Zhong, Pingping Sun, Xiaojing Zhang, Zhengyi Lian, Hang Yin, Lijun Xu, Guyin He, Haiyan Xu, Han Wu, Ziheng Wang, Kai Miao, Jianfei Huang
{"title":"NXPH4 mediated by m<sup>5</sup>C contributes to the malignant characteristics of colorectal cancer via inhibiting HIF1A degradation.","authors":"Lei Yang, Jiawen Shi, Mingyang Zhong, Pingping Sun, Xiaojing Zhang, Zhengyi Lian, Hang Yin, Lijun Xu, Guyin He, Haiyan Xu, Han Wu, Ziheng Wang, Kai Miao, Jianfei Huang","doi":"10.1186/s11658-024-00630-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Colorectal cancer (CRC) is a form of malignancy that exhibits a comparatively elevated occurrence and fatality rate. Given the relatively slower progress in diagnostic and therapeutic approaches for CRC, there is a need to investigate more accurate and efficient biomarkers.</p><p><strong>Methods: </strong>Core regulatory genes were screened using the TCGA database, and the expression of neurexophilin 4 (NXPH4) and its prognostic implications were validated using tissue microarray staining. The assessment of NXPH4 functions involved a range of experiments, including cellular, organoid, and murine models. Furthermore, a regulatory network between m<sup>5</sup>C, NXPH4, and HIF1A was established through several in vitro experiments.</p><p><strong>Results: </strong>The overexpression of NXPH4 is associated with unfavorable prognoses in patients with CRC and hepatocellular carcinoma. Additionally, it facilitates the progression of malignant tumors both in laboratory settings and in living organisms of colorectal carcinoma. Our research also reveals that NXPH4 mRNA can avoid degradation through RNautophagy, relying on an m<sup>5</sup>C-dependent mechanism. Moreover, NXPH4 amplifies the HIF signaling pathway and stabilizes HIF1A by competitively binding to PHD4.</p><p><strong>Conclusions: </strong>NXPH4, regulated by m<sup>5</sup>C, promotes malignant tumor progression and regulates the HIF pathway. Consequently, targeting NXPH4 through molecular therapies could potentially serve as an efficacious therapeutic strategy for the management of CRC exhibiting elevated NXPH4 expression.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":null,"pages":null},"PeriodicalIF":9.2000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334498/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular & Molecular Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s11658-024-00630-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Colorectal cancer (CRC) is a form of malignancy that exhibits a comparatively elevated occurrence and fatality rate. Given the relatively slower progress in diagnostic and therapeutic approaches for CRC, there is a need to investigate more accurate and efficient biomarkers.
Methods: Core regulatory genes were screened using the TCGA database, and the expression of neurexophilin 4 (NXPH4) and its prognostic implications were validated using tissue microarray staining. The assessment of NXPH4 functions involved a range of experiments, including cellular, organoid, and murine models. Furthermore, a regulatory network between m5C, NXPH4, and HIF1A was established through several in vitro experiments.
Results: The overexpression of NXPH4 is associated with unfavorable prognoses in patients with CRC and hepatocellular carcinoma. Additionally, it facilitates the progression of malignant tumors both in laboratory settings and in living organisms of colorectal carcinoma. Our research also reveals that NXPH4 mRNA can avoid degradation through RNautophagy, relying on an m5C-dependent mechanism. Moreover, NXPH4 amplifies the HIF signaling pathway and stabilizes HIF1A by competitively binding to PHD4.
Conclusions: NXPH4, regulated by m5C, promotes malignant tumor progression and regulates the HIF pathway. Consequently, targeting NXPH4 through molecular therapies could potentially serve as an efficacious therapeutic strategy for the management of CRC exhibiting elevated NXPH4 expression.
期刊介绍:
Cellular & Molecular Biology Letters is an international journal dedicated to the dissemination of fundamental knowledge in all areas of cellular and molecular biology, cancer cell biology, and certain aspects of biochemistry, biophysics and biotechnology.