Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance.

IF 5.3 3区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE
Yitian Sun, Qinyi Li, Yufei Huang, Zijing Yang, Guohua Li, Xiaoyu Sun, Xiaoqing Gu, Yunhao Qiao, Qibiao Wu, Tian Xie, Xinbing Sui
{"title":"Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance.","authors":"Yitian Sun, Qinyi Li, Yufei Huang, Zijing Yang, Guohua Li, Xiaoyu Sun, Xiaoqing Gu, Yunhao Qiao, Qibiao Wu, Tian Xie, Xinbing Sui","doi":"10.1186/s13020-024-00982-2","DOIUrl":null,"url":null,"abstract":"<p><p>Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"110"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334420/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-024-00982-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.

通过调节氧化还原平衡提高抗癌药物敏感性或降低其不良反应的天然产品。
据报道,氧化还原失衡在肿瘤发生、癌症发展和耐药性方面起着关键作用。严重的氧化损伤是癌细胞对治疗反应的一般结果,可能导致癌细胞死亡或严重的不良反应。为了维持寿命,癌细胞可以挽救氧化还原平衡,并进入抗癌药物耐受状态。因此,靶向氧化还原信号通路已成为提高抗癌药物疗效和减少其不良反应的一种有吸引力的前瞻性策略。在过去几十年中,天然产物(NPs)因其高效低毒已成为开发新型抗癌药物的宝贵资源。越来越多的证据表明,许多 NPs 无论是单独使用还是作为辅助剂使用,都具有显著的抗肿瘤效果,并且正在成为通过调节氧化还原平衡来提高传统癌症疗法的敏感性和降低其不良反应的有效方法。其中有几种基于 NPs 的新型抗癌药物已进入临床试验阶段。在这篇综述中,我们总结了 NPs 与传统抗癌药物结合的协同抗癌效应和相关氧化还原机制。我们相信,以氧化还原调控为靶点的 NPs 将成为前景广阔的新型候选药物,并为未来的癌症治疗提供前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Medicine
Chinese Medicine INTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍: Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine. Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies. Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信