{"title":"Silencing CircHIPK3 improves sevoflurane-explore learning and memory dysfunction and nerve damage via enhancing miR-338-3p.","authors":"Xiuli Li, Xuefei Li, Yinan Liang","doi":"10.1093/toxres/tfae132","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sevoflurane (Sev), a widely used volatile anesthetic, can cause neurotoxicity, and impair learning and memory.</p><p><strong>Objective: </strong>This study investigates the role and mechanisms of circHIPK3 in Sev-exposed neurotoxicity and learning and memory impairment.</p><p><strong>Methods: </strong>SD rats and hippocampal neuronal cells were exposed to Sev. RT-qPCR analysis of circHIPK3 and miR-338-3p levels. MWM test was performed to examine the behavioral changes in rats. The levels of circHIPK3 and miR-338-3p levels were investigated using RT-qPCR. ELISA assay to analyze the expression of pro-inflammatory factors. CCK-8, flow cytometry, and commercial ROS assay kits were analyzed to detect cell viability, apoptosis, and ROS production. DLR and RIP assays validate circHIPK3 binding to miR-338-3p.</p><p><strong>Results: </strong>Sev increased circHIPK3 expression in rat hippocampal tissue as well as in neuronal cells but decreased miR-338-3p levels compared to controls. circHIPK3 binding to miR-338-3p. Furthermore, silencing of circHIPK3 rats attenuated Sev-induced decline in learning and memory functions . silencing circHIPK3 also reduced Sev-induced secretion of inflammatory factors in rat and neuronal cells. Reducing circHIPK3 partially reversed the Sev-induced decrease in cell viability, increased apoptosis, and overproduction of ROS. However, the inhibitory effect of circHIPK3 on Sev neurotoxicity was restored upon downregulation of miR-338-3p.</p><p><strong>Conclusion: </strong>Collectively, silencing circHIPK3 alleviates Sev exposure-induced learning and memory deficits and neurotoxicity by enhancing miR-338-3p expression.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 4","pages":"tfae132"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331635/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae132","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sevoflurane (Sev), a widely used volatile anesthetic, can cause neurotoxicity, and impair learning and memory.
Objective: This study investigates the role and mechanisms of circHIPK3 in Sev-exposed neurotoxicity and learning and memory impairment.
Methods: SD rats and hippocampal neuronal cells were exposed to Sev. RT-qPCR analysis of circHIPK3 and miR-338-3p levels. MWM test was performed to examine the behavioral changes in rats. The levels of circHIPK3 and miR-338-3p levels were investigated using RT-qPCR. ELISA assay to analyze the expression of pro-inflammatory factors. CCK-8, flow cytometry, and commercial ROS assay kits were analyzed to detect cell viability, apoptosis, and ROS production. DLR and RIP assays validate circHIPK3 binding to miR-338-3p.
Results: Sev increased circHIPK3 expression in rat hippocampal tissue as well as in neuronal cells but decreased miR-338-3p levels compared to controls. circHIPK3 binding to miR-338-3p. Furthermore, silencing of circHIPK3 rats attenuated Sev-induced decline in learning and memory functions . silencing circHIPK3 also reduced Sev-induced secretion of inflammatory factors in rat and neuronal cells. Reducing circHIPK3 partially reversed the Sev-induced decrease in cell viability, increased apoptosis, and overproduction of ROS. However, the inhibitory effect of circHIPK3 on Sev neurotoxicity was restored upon downregulation of miR-338-3p.
Conclusion: Collectively, silencing circHIPK3 alleviates Sev exposure-induced learning and memory deficits and neurotoxicity by enhancing miR-338-3p expression.