Exploring the trade-off between computational power and energy efficiency: An analysis of the evolution of quantum computing and its relation to classical computing
IF 3.7 2区 计算机科学Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Elena Desdentado , Coral Calero , Ma Ángeles Moraga , Manuel Serrano , Félix García
{"title":"Exploring the trade-off between computational power and energy efficiency: An analysis of the evolution of quantum computing and its relation to classical computing","authors":"Elena Desdentado , Coral Calero , Ma Ángeles Moraga , Manuel Serrano , Félix García","doi":"10.1016/j.jss.2024.112165","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum computing is considered a revolutionary technology due to its ability to solve computational problems that are beyond the capabilities of classical computers. However, quantum computing requires great amounts of energy to run. Therefore, a factor in deciding whether to use quantum computing should be not only the complexity of the problem to be solved, but also the energy required to solve it. This paper presents an empirical study developed with the aim of comparing classical and quantum computing in terms of energy efficiency to determine whether the increased power of quantum computers is offset by their higher energy consumption. To achieve this, a variety of problems with different levels of complexity were tested on both types of computers. Specifically, we used the IBM Quantum computers with a maximum of 5 qubits and an Intel i7, as a classical computer. In addition to this we have also analysed the evolution of the quantum computers, performing measurements on three time periods. Our empirical study showed that there is a variability of results obtained in the three time periods and that quantum computing is not recommended for low-complexity problems, given its high energy consumption, particularly when compared to traditional computing.</p></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"217 ","pages":"Article 112165"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0164121224002103/pdfft?md5=f1e454a84fdd497790282cfb0938fc07&pid=1-s2.0-S0164121224002103-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121224002103","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum computing is considered a revolutionary technology due to its ability to solve computational problems that are beyond the capabilities of classical computers. However, quantum computing requires great amounts of energy to run. Therefore, a factor in deciding whether to use quantum computing should be not only the complexity of the problem to be solved, but also the energy required to solve it. This paper presents an empirical study developed with the aim of comparing classical and quantum computing in terms of energy efficiency to determine whether the increased power of quantum computers is offset by their higher energy consumption. To achieve this, a variety of problems with different levels of complexity were tested on both types of computers. Specifically, we used the IBM Quantum computers with a maximum of 5 qubits and an Intel i7, as a classical computer. In addition to this we have also analysed the evolution of the quantum computers, performing measurements on three time periods. Our empirical study showed that there is a variability of results obtained in the three time periods and that quantum computing is not recommended for low-complexity problems, given its high energy consumption, particularly when compared to traditional computing.
期刊介绍:
The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to:
•Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution
•Agile, model-driven, service-oriented, open source and global software development
•Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems
•Human factors and management concerns of software development
•Data management and big data issues of software systems
•Metrics and evaluation, data mining of software development resources
•Business and economic aspects of software development processes
The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.