{"title":"\"Semantic segmentation for plant leaf disease classification and damage detection: A deep learning approach\"","authors":"","doi":"10.1016/j.atech.2024.100526","DOIUrl":null,"url":null,"abstract":"<div><p>Agriculture sustains the livelihoods of a significant portion of India's rural population, yet challenges persist in manual practices and disease management. To address these issues, this paper presents an automated plant leaf damage detection and disease identification system leveraging advanced deep learning techniques. The proposed method consists of six stages: first, utilizing YOLOv8 for region of interest identification from drone images; second, employing DeepLabV3+ for background removal and facilitating disease classification; third, implementing a CNN model for accurate disease classification achieving high training and validation accuracies (96.97 % and 92.89 %, respectively); fourth, utilizing UNet semantic segmentation for precise damage detection at a pixel level with an evaluation accuracy of 99 %; fifth, evaluating disease severity; and sixth, suggesting tailored remedies based on disease type and damage state. Experimental analysis using the Plant Village dataset demonstrates the effectiveness of the proposed method in detecting various defects in plants such as apple, tomato, and corn. This automated approach holds promise for enhancing agricultural productivity and disease management in India and beyond.</p></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277237552400131X/pdfft?md5=b5a85e9638d70c4b376f220ae2d18d36&pid=1-s2.0-S277237552400131X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277237552400131X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Agriculture sustains the livelihoods of a significant portion of India's rural population, yet challenges persist in manual practices and disease management. To address these issues, this paper presents an automated plant leaf damage detection and disease identification system leveraging advanced deep learning techniques. The proposed method consists of six stages: first, utilizing YOLOv8 for region of interest identification from drone images; second, employing DeepLabV3+ for background removal and facilitating disease classification; third, implementing a CNN model for accurate disease classification achieving high training and validation accuracies (96.97 % and 92.89 %, respectively); fourth, utilizing UNet semantic segmentation for precise damage detection at a pixel level with an evaluation accuracy of 99 %; fifth, evaluating disease severity; and sixth, suggesting tailored remedies based on disease type and damage state. Experimental analysis using the Plant Village dataset demonstrates the effectiveness of the proposed method in detecting various defects in plants such as apple, tomato, and corn. This automated approach holds promise for enhancing agricultural productivity and disease management in India and beyond.