Vikneswaran Jeya Kumaran , Nur Adibah Mohidem , Nik Norasma Che’Ya , Wan Fazilah Fazlil Ilahi , Jasmin Arif Shah , Zulhilmy Sahwee , Norhakim Yusof , Mohammad Husni Omar
{"title":"How can aerial imagery and vegetation indices algorithms monitor the geotagged crop?","authors":"Vikneswaran Jeya Kumaran , Nur Adibah Mohidem , Nik Norasma Che’Ya , Wan Fazilah Fazlil Ilahi , Jasmin Arif Shah , Zulhilmy Sahwee , Norhakim Yusof , Mohammad Husni Omar","doi":"10.1016/j.ejrs.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>There is very little to no literature on the use of geotagging to monitor crops from aerial photos, even though many technologies have been created to do so. Current crop monitoring methods, relying on field data and lab analysis, are inefficient due to high labor, time, and potential harm, limiting their broad use. With the use of vegetation indices (VI) and geotagging, this paper highlights the benefits of crop-specific monitoring with unmanned aerial vehicles (UAV). This study systematically searched the original articles published from the 1st of January 2016 to the 7th of October 2021 in the databases of Scopus, ScienceDirect, Commonwealth Agricultural Bureaux (CAB) Direct, and Web of Science (WoS) using Boolean string: “aerial imagery” AND “vegetation index” OR “vegetation indices“ AND “crop”. Out of the papers identified, 28 eligible studies did meet our inclusion criteria and were evaluated. This review thoroughly discusses the advantages of aerial imagery, vegetation indices, and geotagging tools in the context of crop monitoring. It was found that geotagged crop monitoring using UAV empowers farmers with data-driven insights using vegetation indices, enabling them to make informed decisions before acting, transforming agriculture towards a digital future. This study offers valuable insights for researchers and industry players, helping them identify effective and context-specific crop monitoring strategies for diverse plantations, crops, and budgets. Moreover, by utilizing the advanced computational capabilities of artificial intelligence (AI), we can analyze a wide range of vegetation indices to gain a comprehensive understanding of crop health and conduct accurate predictions.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982324000590/pdfft?md5=edfc22e2e686d15dd63f69ec1f676497&pid=1-s2.0-S1110982324000590-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000590","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
There is very little to no literature on the use of geotagging to monitor crops from aerial photos, even though many technologies have been created to do so. Current crop monitoring methods, relying on field data and lab analysis, are inefficient due to high labor, time, and potential harm, limiting their broad use. With the use of vegetation indices (VI) and geotagging, this paper highlights the benefits of crop-specific monitoring with unmanned aerial vehicles (UAV). This study systematically searched the original articles published from the 1st of January 2016 to the 7th of October 2021 in the databases of Scopus, ScienceDirect, Commonwealth Agricultural Bureaux (CAB) Direct, and Web of Science (WoS) using Boolean string: “aerial imagery” AND “vegetation index” OR “vegetation indices“ AND “crop”. Out of the papers identified, 28 eligible studies did meet our inclusion criteria and were evaluated. This review thoroughly discusses the advantages of aerial imagery, vegetation indices, and geotagging tools in the context of crop monitoring. It was found that geotagged crop monitoring using UAV empowers farmers with data-driven insights using vegetation indices, enabling them to make informed decisions before acting, transforming agriculture towards a digital future. This study offers valuable insights for researchers and industry players, helping them identify effective and context-specific crop monitoring strategies for diverse plantations, crops, and budgets. Moreover, by utilizing the advanced computational capabilities of artificial intelligence (AI), we can analyze a wide range of vegetation indices to gain a comprehensive understanding of crop health and conduct accurate predictions.