From Revisions to Insights: Converting Radiology Report Revisions into Actionable Educational Feedback Using Generative AI Models.

Shawn Lyo, Suyash Mohan, Alvand Hassankhani, Abass Noor, Farouk Dako, Tessa Cook
{"title":"From Revisions to Insights: Converting Radiology Report Revisions into Actionable Educational Feedback Using Generative AI Models.","authors":"Shawn Lyo, Suyash Mohan, Alvand Hassankhani, Abass Noor, Farouk Dako, Tessa Cook","doi":"10.1007/s10278-024-01233-4","DOIUrl":null,"url":null,"abstract":"<p><p>Expert feedback on trainees' preliminary reports is crucial for radiologic training, but real-time feedback can be challenging due to non-contemporaneous, remote reading and increasing imaging volumes. Trainee report revisions contain valuable educational feedback, but synthesizing data from raw revisions is challenging. Generative AI models can potentially analyze these revisions and provide structured, actionable feedback. This study used the OpenAI GPT-4 Turbo API to analyze paired synthesized and open-source analogs of preliminary and finalized reports, identify discrepancies, categorize their severity and type, and suggest review topics. Expert radiologists reviewed the output by grading discrepancies, evaluating the severity and category accuracy, and suggested review topic relevance. The reproducibility of discrepancy detection and maximal discrepancy severity was also examined. The model exhibited high sensitivity, detecting significantly more discrepancies than radiologists (W = 19.0, p < 0.001) with a strong positive correlation (r = 0.778, p < 0.001). Interrater reliability for severity and type were fair (Fleiss' kappa = 0.346 and 0.340, respectively; weighted kappa = 0.622 for severity). The LLM achieved a weighted F1 score of 0.66 for severity and 0.64 for type. Generated teaching points were considered relevant in ~ 85% of cases, and relevance correlated with the maximal discrepancy severity (Spearman ρ = 0.76, p < 0.001). The reproducibility was moderate to good (ICC (2,1) = 0.690) for the number of discrepancies and substantial for maximal discrepancy severity (Fleiss' kappa = 0.718; weighted kappa = 0.94). Generative AI models can effectively identify discrepancies in report revisions and generate relevant educational feedback, offering promise for enhancing radiology training.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01233-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Expert feedback on trainees' preliminary reports is crucial for radiologic training, but real-time feedback can be challenging due to non-contemporaneous, remote reading and increasing imaging volumes. Trainee report revisions contain valuable educational feedback, but synthesizing data from raw revisions is challenging. Generative AI models can potentially analyze these revisions and provide structured, actionable feedback. This study used the OpenAI GPT-4 Turbo API to analyze paired synthesized and open-source analogs of preliminary and finalized reports, identify discrepancies, categorize their severity and type, and suggest review topics. Expert radiologists reviewed the output by grading discrepancies, evaluating the severity and category accuracy, and suggested review topic relevance. The reproducibility of discrepancy detection and maximal discrepancy severity was also examined. The model exhibited high sensitivity, detecting significantly more discrepancies than radiologists (W = 19.0, p < 0.001) with a strong positive correlation (r = 0.778, p < 0.001). Interrater reliability for severity and type were fair (Fleiss' kappa = 0.346 and 0.340, respectively; weighted kappa = 0.622 for severity). The LLM achieved a weighted F1 score of 0.66 for severity and 0.64 for type. Generated teaching points were considered relevant in ~ 85% of cases, and relevance correlated with the maximal discrepancy severity (Spearman ρ = 0.76, p < 0.001). The reproducibility was moderate to good (ICC (2,1) = 0.690) for the number of discrepancies and substantial for maximal discrepancy severity (Fleiss' kappa = 0.718; weighted kappa = 0.94). Generative AI models can effectively identify discrepancies in report revisions and generate relevant educational feedback, offering promise for enhancing radiology training.

Abstract Image

从修订到洞察:利用生成式人工智能模型将放射学报告修订版转化为可操作的教育反馈。
专家对学员初步报告的反馈意见对放射学培训至关重要,但由于非同步、远程阅片和成像量不断增加,实时反馈可能具有挑战性。学员报告的修改包含宝贵的教育反馈,但从原始修改中综合数据是一项挑战。生成式人工智能模型有可能分析这些修订,并提供结构化、可操作的反馈。本研究使用 OpenAI GPT-4 Turbo API 分析初步报告和最终报告的配对合成和开源模拟,识别差异,对其严重程度和类型进行分类,并提出审查主题。放射科专家通过对差异进行分级、评估严重程度和类别的准确性以及建议审查主题的相关性来审查输出结果。此外,还对差异检测的再现性和最大差异严重程度进行了检查。该模型表现出很高的灵敏度,检测到的差异明显多于放射科医生(W = 19.0,p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信