Andrew Shahidehpour, Mudassir Rashid, Mohammad Reza Askari, Mohammad Ahmadasas, Mahmoud Abdel-Latif, Cynthia Fritschi, Lauretta Quinn, Sirimon Reutrakul, Ulf G Bronas, Ali Cinar
{"title":"Modeling Metformin and Dapagliflozin Pharmacokinetics in Chronic Kidney Disease.","authors":"Andrew Shahidehpour, Mudassir Rashid, Mohammad Reza Askari, Mohammad Ahmadasas, Mahmoud Abdel-Latif, Cynthia Fritschi, Lauretta Quinn, Sirimon Reutrakul, Ulf G Bronas, Ali Cinar","doi":"10.1208/s12248-024-00962-2","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic kidney disease (CKD) is a complication of diabetes that affects circulating drug concentrations and elimination of drugs from the body. Multiple drugs may be prescribed for treatment of diabetes and co-morbidities, and CKD complicates the pharmacotherapy selection and dosing regimen. Characterizing variations in renal drug clearance using models requires large clinical datasets that are costly and time-consuming to collect. We propose a flexible approach to incorporate impaired renal clearance in pharmacokinetic (PK) models using descriptive statistics and secondary data with mechanistic models and PK first principles. Probability density functions were generated for various drug clearance mechanisms based on the degree of renal impairment and used to estimate the total clearance starting from glomerular filtration for metformin (MET) and dapagliflozin (DAPA). These estimates were integrated with PK models of MET and DAPA for simulations. MET renal clearance decreased proportionally with a reduction in estimated glomerular filtration rate (eGFR) and estimated net tubular transport rates. DAPA total clearance varied little with renal impairment and decreased proportionally to reported non-renal clearance rates. Net tubular transport rates were negative to partially account for low renal clearance compared with eGFR. The estimated clearance values and trends were consistent with MET and DAPA PK characteristics in the literature. Dose adjustment based on reduced clearance levels estimated correspondingly lower doses for MET and DAPA while maintaining desired dose exposure. Estimation of drug clearance rates using descriptive statistics and secondary data with mechanistic models and PK first principles improves modeling of CKD in diabetes and can guide treatment selection.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-024-00962-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic kidney disease (CKD) is a complication of diabetes that affects circulating drug concentrations and elimination of drugs from the body. Multiple drugs may be prescribed for treatment of diabetes and co-morbidities, and CKD complicates the pharmacotherapy selection and dosing regimen. Characterizing variations in renal drug clearance using models requires large clinical datasets that are costly and time-consuming to collect. We propose a flexible approach to incorporate impaired renal clearance in pharmacokinetic (PK) models using descriptive statistics and secondary data with mechanistic models and PK first principles. Probability density functions were generated for various drug clearance mechanisms based on the degree of renal impairment and used to estimate the total clearance starting from glomerular filtration for metformin (MET) and dapagliflozin (DAPA). These estimates were integrated with PK models of MET and DAPA for simulations. MET renal clearance decreased proportionally with a reduction in estimated glomerular filtration rate (eGFR) and estimated net tubular transport rates. DAPA total clearance varied little with renal impairment and decreased proportionally to reported non-renal clearance rates. Net tubular transport rates were negative to partially account for low renal clearance compared with eGFR. The estimated clearance values and trends were consistent with MET and DAPA PK characteristics in the literature. Dose adjustment based on reduced clearance levels estimated correspondingly lower doses for MET and DAPA while maintaining desired dose exposure. Estimation of drug clearance rates using descriptive statistics and secondary data with mechanistic models and PK first principles improves modeling of CKD in diabetes and can guide treatment selection.
期刊介绍:
The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including:
· Drug Design and Discovery
· Pharmaceutical Biotechnology
· Biopharmaceutics, Formulation, and Drug Delivery
· Metabolism and Transport
· Pharmacokinetics, Pharmacodynamics, and Pharmacometrics
· Translational Research
· Clinical Evaluations and Therapeutic Outcomes
· Regulatory Science
We invite submissions under the following article types:
· Original Research Articles
· Reviews and Mini-reviews
· White Papers, Commentaries, and Editorials
· Meeting Reports
· Brief/Technical Reports and Rapid Communications
· Regulatory Notes
· Tutorials
· Protocols in the Pharmaceutical Sciences
In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.