Characterization of a novel mitophagy-related 5-genes signature for diagnosis of acute myocardial infarction

IF 3.5 3区 医学 Q2 PHARMACOLOGY & PHARMACY
{"title":"Characterization of a novel mitophagy-related 5-genes signature for diagnosis of acute myocardial infarction","authors":"","doi":"10.1016/j.vph.2024.107417","DOIUrl":null,"url":null,"abstract":"<div><p>Myocardial infarction (MI) and the ensuing heart failure (HF) remain the main cause of morbidity and mortality worldwide. One of the strategies to combat MI and HF lies in the ability to accurately predict the onset of these disorders. Alterations in mitochondrial homeostasis have been reported to be involved in the pathogenesis of various cardiovascular diseases (CVDs). In this regard, perturbations to mitochondrial dynamics leading to impaired clearance of dysfunctional mitochondria have been previously established to be a crucial trigger for MI/HF.</p><p>In this study, we found that MI patients could be classified into three clusters based on the expression levels of mitophagy-related genes and consensus clustering. We identified a mitophagy-related diagnostic 5-genes signature for MI using support vector machines-Recursive Feature Elimination (SVM-RFE) and random forest, with the area under the ROC curve (AUC) value of the predictive model at 0.813. Additionally, the single-cell transcriptome and pseudo-time analyses showed that the mitoscore was significantly upregulated in macrophages, endothelial cells, pericytes, fibroblasts and monocytes in patients with ischemic cardiomyopathy, while sequestosome 1 (SQSTM1) exhibited remarkable increase in the infarcted (ICM) and non-infarcted (ICMN) myocardium samples dissected from the left ventricle compared with control samples. Lastly, through analysis of peripheral blood from MI patients, we found that the expression of SQSTM1 is positively correlated with troponin-T (<em>P</em> &lt; 0.0001, <em>R</em> = 0.4195, R2 = 0.1759). Therefore, this study provides the rationale for a cell-specific mitophagy-related gene signature as an additional supporting diagnostic for CVDs.</p></div>","PeriodicalId":23949,"journal":{"name":"Vascular pharmacology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vascular pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537189124001435","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial infarction (MI) and the ensuing heart failure (HF) remain the main cause of morbidity and mortality worldwide. One of the strategies to combat MI and HF lies in the ability to accurately predict the onset of these disorders. Alterations in mitochondrial homeostasis have been reported to be involved in the pathogenesis of various cardiovascular diseases (CVDs). In this regard, perturbations to mitochondrial dynamics leading to impaired clearance of dysfunctional mitochondria have been previously established to be a crucial trigger for MI/HF.

In this study, we found that MI patients could be classified into three clusters based on the expression levels of mitophagy-related genes and consensus clustering. We identified a mitophagy-related diagnostic 5-genes signature for MI using support vector machines-Recursive Feature Elimination (SVM-RFE) and random forest, with the area under the ROC curve (AUC) value of the predictive model at 0.813. Additionally, the single-cell transcriptome and pseudo-time analyses showed that the mitoscore was significantly upregulated in macrophages, endothelial cells, pericytes, fibroblasts and monocytes in patients with ischemic cardiomyopathy, while sequestosome 1 (SQSTM1) exhibited remarkable increase in the infarcted (ICM) and non-infarcted (ICMN) myocardium samples dissected from the left ventricle compared with control samples. Lastly, through analysis of peripheral blood from MI patients, we found that the expression of SQSTM1 is positively correlated with troponin-T (P < 0.0001, R = 0.4195, R2 = 0.1759). Therefore, this study provides the rationale for a cell-specific mitophagy-related gene signature as an additional supporting diagnostic for CVDs.

Abstract Image

用于诊断急性心肌梗死的新型有丝分裂相关 5 基因特征。
心肌梗塞(MI)和随之而来的心力衰竭(HF)仍然是全球发病率和死亡率的主要原因。防治心肌梗死和心力衰竭的策略之一就是能够准确预测这些疾病的发病。据报道,线粒体平衡的改变与各种心血管疾病(CVDs)的发病机制有关。在这方面,线粒体动力学紊乱导致功能失调线粒体的清除能力受损已被证实是诱发心肌缺血/心房颤动的关键因素。本研究发现,根据有丝分裂相关基因的表达水平和共识聚类,可将 MI 患者分为三组。我们利用支持向量机-递归特征消除(SVM-RFE)和随机森林确定了与有丝分裂相关的 MI 诊断 5 基因特征,预测模型的 ROC 曲线下面积(AUC)值为 0.813。此外,单细胞转录组和伪时间分析表明,缺血性心肌病患者的巨噬细胞、内皮细胞、周细胞、成纤维细胞和单核细胞中的有丝分裂分数显著上调,而从左心室解剖的梗死(ICM)和非梗死(ICMN)心肌样本中的序列组1(SQSTM1)与对照样本相比显著增加。最后,通过对心肌梗死患者外周血的分析,我们发现 SQSTM1 的表达与肌钙蛋白-T 呈正相关(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vascular pharmacology
Vascular pharmacology 医学-药学
CiteScore
6.60
自引率
2.50%
发文量
153
审稿时长
31 days
期刊介绍: Vascular Pharmacology publishes papers, which contains results of all aspects of biology and pharmacology of the vascular system. Papers are encouraged in basic, translational and clinical aspects of Vascular Biology and Pharmacology, utilizing approaches ranging from molecular biology to integrative physiology. All papers are in English. The Journal publishes review articles which include vascular aspects of thrombosis, inflammation, cell signalling, atherosclerosis, and lipid metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信