Feasibility of forecasting future critical care bed availability using bed management data.

IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES
John Palmer, Areti Manataki, Laura Moss, Aileen Neilson, Tsz-Yan Milly Lo
{"title":"Feasibility of forecasting future critical care bed availability using bed management data.","authors":"John Palmer, Areti Manataki, Laura Moss, Aileen Neilson, Tsz-Yan Milly Lo","doi":"10.1136/bmjhci-2024-101096","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This project aims to determine the feasibility of predicting future critical care bed availability using data-driven computational forecast modelling and routinely collected hospital bed management data.</p><p><strong>Methods: </strong>In this proof-of-concept, single-centre data informatics feasibility study, regression-based and classification data science techniques were applied retrospectively to prospectively collect routine hospital-wide bed management data to forecast critical care bed capacity. The availability of at least one critical care bed was forecasted using a forecast horizon of 1, 7 and 14 days in advance.</p><p><strong>Results: </strong>We demonstrated for the first time the feasibility of forecasting critical care bed capacity without requiring detailed patient-level data using only routinely collected hospital bed management data and interpretable models. Predictive performance for bed availability 1 day in the future was better than 14 days (mean absolute error 1.33 vs 1.61 and area under the curve 0.78 vs 0.73, respectively). By analysing feature importance, we demonstrated that the models relied mainly on critical care and temporal data rather than data from other wards in the hospital.</p><p><strong>Discussion: </strong>Our data-driven forecasting tool only required hospital bed management data to forecast critical care bed availability. This novel approach means no patient-sensitive data are required in the modelling and warrants further work to refine this approach in future bed availability forecast in other hospital wards.</p><p><strong>Conclusions: </strong>Data-driven critical care bed availability prediction was possible. Further investigations into its utility in multicentre critical care settings or in other clinical settings are warranted.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"31 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2024-101096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This project aims to determine the feasibility of predicting future critical care bed availability using data-driven computational forecast modelling and routinely collected hospital bed management data.

Methods: In this proof-of-concept, single-centre data informatics feasibility study, regression-based and classification data science techniques were applied retrospectively to prospectively collect routine hospital-wide bed management data to forecast critical care bed capacity. The availability of at least one critical care bed was forecasted using a forecast horizon of 1, 7 and 14 days in advance.

Results: We demonstrated for the first time the feasibility of forecasting critical care bed capacity without requiring detailed patient-level data using only routinely collected hospital bed management data and interpretable models. Predictive performance for bed availability 1 day in the future was better than 14 days (mean absolute error 1.33 vs 1.61 and area under the curve 0.78 vs 0.73, respectively). By analysing feature importance, we demonstrated that the models relied mainly on critical care and temporal data rather than data from other wards in the hospital.

Discussion: Our data-driven forecasting tool only required hospital bed management data to forecast critical care bed availability. This novel approach means no patient-sensitive data are required in the modelling and warrants further work to refine this approach in future bed availability forecast in other hospital wards.

Conclusions: Data-driven critical care bed availability prediction was possible. Further investigations into its utility in multicentre critical care settings or in other clinical settings are warranted.

利用病床管理数据预测未来重症监护病床可用性的可行性。
目标:本项目旨在利用数据驱动的计算预测模型和日常收集的医院病床管理数据,确定预测未来重症监护病床可用性的可行性:本项目旨在利用数据驱动的计算预测模型和日常收集的医院病床管理数据,确定预测未来重症监护病床可用性的可行性:在这项概念验证、单中心数据信息学可行性研究中,基于回归和分类的数据科学技术被应用于回顾性前瞻性收集全院范围内的常规病床管理数据,以预测重症监护病床容量。通过提前 1 天、7 天和 14 天的预测范围对至少一张重症监护病床的可用性进行了预测:我们首次证明了预测重症监护床位容量的可行性,无需详细的患者级别数据,只需使用日常收集的医院床位管理数据和可解释模型。对未来 1 天病床可用性的预测效果优于 14 天(平均绝对误差分别为 1.33 和 1.61,曲线下面积分别为 0.78 和 0.73)。通过对特征重要性的分析,我们发现模型主要依赖于重症监护和时间数据,而不是医院其他病房的数据:我们的数据驱动预测工具只需要医院床位管理数据就能预测重症监护床位的可用性。这种新颖的方法意味着在建模过程中不需要病人敏感数据,因此有必要进一步改进这种方法,以便在未来预测其他病房的床位供应情况:结论:数据驱动的重症监护床位可用性预测是可行的。结论:数据驱动的重症监护床位可用性预测是可行的,需要进一步研究其在多中心重症监护环境或其他临床环境中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
4.90%
发文量
40
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信