Comparative biophysical study of clinical surfactants using constrained drop surfactometry.

IF 3.6 2区 医学 Q1 PHYSIOLOGY
Yi Y Zuo
{"title":"Comparative biophysical study of clinical surfactants using constrained drop surfactometry.","authors":"Yi Y Zuo","doi":"10.1152/ajplung.00058.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Surfactant replacement therapy is crucial in managing neonatal respiratory distress syndrome (RDS). Currently licensed clinical surfactants in the United States and Europe, including Survanta, Infasurf, Curosurf, and Alveofact, are all derived from bovine or porcine sources. We conducted a comprehensive examination of the biophysical properties of these four clinical surfactant preparations under physiologically relevant conditions, using constrained drop surfactometry (CDS). The assessed biophysical properties included the adsorption rate, quasi-static and dynamic surface activity, resistance to surfactant inhibition by meconium, and the morphology of the adsorbed surfactant films. This comparative study unveiled distinct in vitro biophysical properties of these clinical surfactants and revealed correlations between their chemical composition, lateral film structure, and biophysical functionality. Notably, at 1 mg/mL, Survanta exhibited a significantly lower adsorption rate compared with the other preparations at the same surfactant concentration. At 10 mg/mL, Infasurf, Curosurf, and Survanta all demonstrated excellent dynamic surface activity, whereas Alveofact exhibited the poorest quasi-static and dynamic surface activity. The suboptimal surface activity of Alveofact is found to be correlated with its unique monolayer-predominant morphology, in contrast to other surfactants forming multilayers. Curosurf, in particular, showcased superior resistance to biophysical inhibition by meconium compared with other preparations. Understanding the diverse biophysical behaviors of clinical surfactants provides crucial insights for precision and personalized design in treating RDS and other respiratory conditions. The findings from this study contribute valuable perspectives for the development of more efficacious and fully synthetic surfactant preparations.<b>NEW & NOTEWORTHY</b> A thorough investigation into the biophysical properties of four animal-derived clinical surfactant preparations was conducted through constrained drop surfactometry under physiologically relevant conditions. This comparative study unveiled unique in vitro biophysical characteristics among these clinical surfactants, establishing correlations between their chemical composition, lateral film structure, and biophysical functionality. The acquired knowledge offers essential insights for the precise and personalized design of clinical surfactant for the treatment of respiratory distress syndrome and other respiratory conditions.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L535-L546"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00058.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Surfactant replacement therapy is crucial in managing neonatal respiratory distress syndrome (RDS). Currently licensed clinical surfactants in the United States and Europe, including Survanta, Infasurf, Curosurf, and Alveofact, are all derived from bovine or porcine sources. We conducted a comprehensive examination of the biophysical properties of these four clinical surfactant preparations under physiologically relevant conditions, using constrained drop surfactometry (CDS). The assessed biophysical properties included the adsorption rate, quasi-static and dynamic surface activity, resistance to surfactant inhibition by meconium, and the morphology of the adsorbed surfactant films. This comparative study unveiled distinct in vitro biophysical properties of these clinical surfactants and revealed correlations between their chemical composition, lateral film structure, and biophysical functionality. Notably, at 1 mg/mL, Survanta exhibited a significantly lower adsorption rate compared with the other preparations at the same surfactant concentration. At 10 mg/mL, Infasurf, Curosurf, and Survanta all demonstrated excellent dynamic surface activity, whereas Alveofact exhibited the poorest quasi-static and dynamic surface activity. The suboptimal surface activity of Alveofact is found to be correlated with its unique monolayer-predominant morphology, in contrast to other surfactants forming multilayers. Curosurf, in particular, showcased superior resistance to biophysical inhibition by meconium compared with other preparations. Understanding the diverse biophysical behaviors of clinical surfactants provides crucial insights for precision and personalized design in treating RDS and other respiratory conditions. The findings from this study contribute valuable perspectives for the development of more efficacious and fully synthetic surfactant preparations.NEW & NOTEWORTHY A thorough investigation into the biophysical properties of four animal-derived clinical surfactant preparations was conducted through constrained drop surfactometry under physiologically relevant conditions. This comparative study unveiled unique in vitro biophysical characteristics among these clinical surfactants, establishing correlations between their chemical composition, lateral film structure, and biophysical functionality. The acquired knowledge offers essential insights for the precise and personalized design of clinical surfactant for the treatment of respiratory distress syndrome and other respiratory conditions.

利用受限液滴表面活性测定法对临床表面活性剂进行生物物理比较研究
表面活性物质替代疗法是治疗新生儿呼吸窘迫综合征(RDS)的关键。目前在美国和欧洲获得许可的临床表面活性剂包括 Survanta、Infasurf、Curosurf 和 Alveofact,它们都来自牛或猪。我们利用约束液滴表面活性测定法(CDS)对这四种临床表面活性剂制剂在生理相关条件下的生物物理特性进行了全面检查。评估的生物物理特性包括吸附率、准静态和动态表面活性、表面活性剂受胎粪抑制的阻力以及吸附表面活性剂薄膜的形态。这项比较研究揭示了这些临床表面活性剂不同的体外生物物理特性,并揭示了它们的化学成分、侧膜结构和生物物理功能之间的相关性。值得注意的是,在 1 毫克/毫升的表面活性剂浓度下,Survanta 的吸附率明显低于其他制剂。在 10 毫克/毫升的浓度下,Infasurf、Curosurf 和 Survanta 都表现出极佳的动态表面活性,而 Alveofact 则表现出最差的准静态和动态表面活性。研究发现,Alveofact 的表面活性不佳与其独特的单层主导形态有关,而其他表面活性剂则形成多层。尤其是 Curosurf,与其他制剂相比,它对胎粪的生物物理抑制具有更强的抵抗力。了解临床表面活性剂的各种生物物理行为为治疗 RDS 和其他呼吸系统疾病的精确和个性化设计提供了重要的启示。本研究的发现为开发更有效的全合成表面活性剂制剂提供了宝贵的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信