{"title":"Electroacupuncture Alleviates Streptozotocin-Induced Diabetic Neuropathic Pain via the TRPV1-Mediated CaMKII/CREB Pathway in Rats","authors":"Yinmu Zheng, Siyi Li, Yurong Kang, Qunqi Hu, Yu Zheng, Xiaoxiang Wang, Hengyu Chi, Keying Guo, Minjian Jiang, Zhouyuan Wei, Xiaomei Shao, Chi Xu, Boyu Liu, Junying Du, Xiaofen He, Jianqiao Fang, Zhenzhong Lu, Yongliang Jiang","doi":"10.1007/s12031-024-02256-w","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetic neuropathic pain (DNP) is a diabetic complication that causes severe pain and deeply impacts the quality of the sufferer’s daily life. Currently, contemporary clinical treatments for DNP generally exhibit a deficiency in effectiveness. Electroacupuncture (EA) is recognized as a highly effective and safe treatment for DNP with few side effects. Regrettably, the processes via which EA alleviates DNP are still poorly characterized. Transient receptor potential vanilloid 1 (TRPV1) and phosphorylated calcium/calmodulin-dependent protein kinase II (p-CaMKII) are overexpressed on spinal cord dorsal horn (SCDH) in DNP rats, and co-localization is observed between them. Capsazepine, a TRPV1 antagonist, effectively reduced nociceptive hypersensitivity and downregulated the overexpression of phosphorylated CaMKIIα in rats with DNP. Conversely, the CaMKII inhibitor KN-93 did not have any impact on TRPV1. EA alleviated heightened sensitivity to pain caused by nociceptive stimuli and downregulated the level of TRPV1, p-CaMKIIα, and phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB) in DNP rats. Intrathecal injection of capsaicin, on the other hand, reversed the above effects of EA. These findings indicated that the CaMKII/CREB pathway on SCDH is located downstream of TRPV1 and is affected by TRPV1. EA alleviates DNP through the TRPV1-mediated CaMKII/CREB pathway.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"74 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-024-02256-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic neuropathic pain (DNP) is a diabetic complication that causes severe pain and deeply impacts the quality of the sufferer’s daily life. Currently, contemporary clinical treatments for DNP generally exhibit a deficiency in effectiveness. Electroacupuncture (EA) is recognized as a highly effective and safe treatment for DNP with few side effects. Regrettably, the processes via which EA alleviates DNP are still poorly characterized. Transient receptor potential vanilloid 1 (TRPV1) and phosphorylated calcium/calmodulin-dependent protein kinase II (p-CaMKII) are overexpressed on spinal cord dorsal horn (SCDH) in DNP rats, and co-localization is observed between them. Capsazepine, a TRPV1 antagonist, effectively reduced nociceptive hypersensitivity and downregulated the overexpression of phosphorylated CaMKIIα in rats with DNP. Conversely, the CaMKII inhibitor KN-93 did not have any impact on TRPV1. EA alleviated heightened sensitivity to pain caused by nociceptive stimuli and downregulated the level of TRPV1, p-CaMKIIα, and phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB) in DNP rats. Intrathecal injection of capsaicin, on the other hand, reversed the above effects of EA. These findings indicated that the CaMKII/CREB pathway on SCDH is located downstream of TRPV1 and is affected by TRPV1. EA alleviates DNP through the TRPV1-mediated CaMKII/CREB pathway.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.