Exploring stability of Jeffrey fluids in anisotropic porous media: incorporating Soret effects and microbial systems

IF 4 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
S. Sridhar, M. Muthtamilselvan
{"title":"Exploring stability of Jeffrey fluids in anisotropic porous media: incorporating Soret effects and microbial systems","authors":"S. Sridhar, M. Muthtamilselvan","doi":"10.1108/hff-02-2024-0145","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to present a study on stability analysis of Jeffrey fluids in the presence of emergent chemical gradients within microbial systems of anisotropic porous media.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This study uses an effective method that combines non-dimensionalization, normal mode analysis and linear stability analysis to examine the stability of Jeffrey fluids in the presence of emergent chemical gradients inside microbial systems in anisotropic porous media. The study focuses on determining critical values and understanding how temperature gradients, concentration gradients and chemical reactions influence the onset of bioconvection patterns. Mathematical transformations and analytical approaches are used to investigate the system’s complicated dynamics and the interaction of numerous characteristics that influence stability.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The analysis is performed using the Jeffrey-Darcy type and Boussinesq estimation. The process involves using non-dimensionalization, using the normal mode approach and conducting linear stability analysis to convert the field equations into ordinary differential equations. The conventional thermal Rayleigh Darcy number <span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>D</mml:mi><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></span> is derived as a comprehensive function of various parameters, and it remains unaffected by the bio convection Lewis number <span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msub><mml:mi mathvariant=\"normal\">Ł</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:mrow></mml:math></span>. Indeed, elevating the values of <em>ζ</em> and <span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mi>γ</mml:mi><mml:mo>′</mml:mo></mml:mrow></mml:math></span> in the interval of 0 to 1 has been noted to expedite the formation of bioconvection patterns while concurrently expanding the dimensions of convective cells. The purpose of this investigation is to learn how the temperature gradient affects the concentration gradient and, in turn, the stability and initiation of bioconvection by taking the Soret effect into the equation. The results provide insightful understandings of the intricate dynamics of fluid systems affected by chemical and biological elements, providing possibilities for possible industrial and biological process applications. The findings illustrate that augmenting both microbe concentration and the bioconvection Péclet number results in an unstable system. In this study, the experimental Rayleigh number <span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>D</mml:mi><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></span> was determined to be <span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mn>4</mml:mn><mml:msup><mml:mi>π</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math></span>at the critical wave number (<span>\n<mml:math display=\"inline\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:msub><mml:mi>δ</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:mrow><mml:mo>ˇ</mml:mo></mml:mover></mml:mrow></mml:math></span>) of <em>π</em>.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The study’s novelty originated from its investigation of a novel and complicated system incorporating Jeffrey fluids, emergent chemical gradients and anisotropic porous media, as well as the use of mathematical and analytical approaches to explore the system’s stability and dynamics.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"6 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-02-2024-0145","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This paper aims to present a study on stability analysis of Jeffrey fluids in the presence of emergent chemical gradients within microbial systems of anisotropic porous media.

Design/methodology/approach

This study uses an effective method that combines non-dimensionalization, normal mode analysis and linear stability analysis to examine the stability of Jeffrey fluids in the presence of emergent chemical gradients inside microbial systems in anisotropic porous media. The study focuses on determining critical values and understanding how temperature gradients, concentration gradients and chemical reactions influence the onset of bioconvection patterns. Mathematical transformations and analytical approaches are used to investigate the system’s complicated dynamics and the interaction of numerous characteristics that influence stability.

Findings

The analysis is performed using the Jeffrey-Darcy type and Boussinesq estimation. The process involves using non-dimensionalization, using the normal mode approach and conducting linear stability analysis to convert the field equations into ordinary differential equations. The conventional thermal Rayleigh Darcy number RDa,c is derived as a comprehensive function of various parameters, and it remains unaffected by the bio convection Lewis number Łe. Indeed, elevating the values of ζ and γ in the interval of 0 to 1 has been noted to expedite the formation of bioconvection patterns while concurrently expanding the dimensions of convective cells. The purpose of this investigation is to learn how the temperature gradient affects the concentration gradient and, in turn, the stability and initiation of bioconvection by taking the Soret effect into the equation. The results provide insightful understandings of the intricate dynamics of fluid systems affected by chemical and biological elements, providing possibilities for possible industrial and biological process applications. The findings illustrate that augmenting both microbe concentration and the bioconvection Péclet number results in an unstable system. In this study, the experimental Rayleigh number RDa,c was determined to be 4π2at the critical wave number ( δcˇ) of π.

Originality/value

The study’s novelty originated from its investigation of a novel and complicated system incorporating Jeffrey fluids, emergent chemical gradients and anisotropic porous media, as well as the use of mathematical and analytical approaches to explore the system’s stability and dynamics.

探索杰弗里流体在各向异性多孔介质中的稳定性:结合索雷特效应和微生物系统
设计/方法/途径 本研究采用一种有效的方法,结合非尺寸化、法模分析和线性稳定性分析,研究各向异性多孔介质中微生物系统内存在突发化学梯度时杰弗里流体的稳定性。研究重点是确定临界值,了解温度梯度、浓度梯度和化学反应如何影响生物对流模式的发生。研究采用数学变换和分析方法来研究系统的复杂动态以及影响稳定性的众多特征之间的相互作用。分析过程包括非尺寸化、使用法向模式方法和进行线性稳定性分析,以便将场方程转换为常微分方程。传统的热雷利达西数 RDa,c 是作为各种参数的综合函数得出的,它不受生物对流路易斯数 Łe 的影响。事实上,在 0 到 1 的区间内提高 ζ 和 γ′ 值可加快生物对流模式的形成,同时扩大对流单元的尺寸。本研究的目的是了解温度梯度如何影响浓度梯度,进而通过将索雷特效应纳入方程来影响生物对流的稳定性和启动。研究结果有助于深入了解受化学和生物元素影响的流体系统的复杂动力学,为工业和生物过程应用提供了可能性。研究结果表明,提高微生物浓度和生物对流佩克莱特数都会导致系统不稳定。在这项研究中,当临界波数(δcˇ)为π时,实验雷利数 RDa,c 被确定为 4π2。这项研究的新颖性源于它对一个包含杰弗里流体、突发化学梯度和各向异性多孔介质的新颖复杂系统的研究,以及使用数学和分析方法对系统稳定性和动力学的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
11.90%
发文量
100
审稿时长
6-12 weeks
期刊介绍: The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信