Unveiling thermally driven photoluminescence in CVD grown MoS2 dendritic flake

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Anagha G. , Kalyan Ghosh , Pratap Kumar Sahoo , Jyoti Mohanty
{"title":"Unveiling thermally driven photoluminescence in CVD grown MoS2 dendritic flake","authors":"Anagha G. ,&nbsp;Kalyan Ghosh ,&nbsp;Pratap Kumar Sahoo ,&nbsp;Jyoti Mohanty","doi":"10.1016/j.physe.2024.116065","DOIUrl":null,"url":null,"abstract":"<div><p>High-quality MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> nanostructures were fabricated via chemical vapor deposition technique on SiO<sub>2</sub>/Si substrate. In this paper, the effect of temperature on the photoluminescence behavior of MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> dendritic flake is addressed. We scrutinized the photoluminescence spectra of monolayer and multilayer regions of MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the temperature range 300 K–680 K. Monolayer and multilayer behavior of MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> flakes are confirmed by Raman and Photoluminescence spectroscopy. The excitonic peaks from the multilayer regime become less intense and show a red shift compared to the monolayer PL spectra. Thermally-induced bandgap modulation of MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is demonstrated. The excitonic intensity and peak positions reveal pronounced temperature-dependent changes. These changes are explicable through the increased electron–phonon interaction and lattice rearrangements. Furthermore, first principle calculations are employed to glean insight into the impact of atomic rearrangements on the band gap behavior of MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Our research presents a detailed understanding of thermally driven band gap modulation of monolayer and multilayer MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which is essential for designing optoelectronic devices.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116065"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724001693","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High-quality MoS2 nanostructures were fabricated via chemical vapor deposition technique on SiO2/Si substrate. In this paper, the effect of temperature on the photoluminescence behavior of MoS2 dendritic flake is addressed. We scrutinized the photoluminescence spectra of monolayer and multilayer regions of MoS2 in the temperature range 300 K–680 K. Monolayer and multilayer behavior of MoS2 flakes are confirmed by Raman and Photoluminescence spectroscopy. The excitonic peaks from the multilayer regime become less intense and show a red shift compared to the monolayer PL spectra. Thermally-induced bandgap modulation of MoS2 is demonstrated. The excitonic intensity and peak positions reveal pronounced temperature-dependent changes. These changes are explicable through the increased electron–phonon interaction and lattice rearrangements. Furthermore, first principle calculations are employed to glean insight into the impact of atomic rearrangements on the band gap behavior of MoS2. Our research presents a detailed understanding of thermally driven band gap modulation of monolayer and multilayer MoS2, which is essential for designing optoelectronic devices.

揭示 CVD 生长的 MoS2 树枝状薄片中的热驱动光致发光
通过化学气相沉积技术在二氧化硅/硅衬底上制造出了高质量的 MoS2 纳米结构。本文探讨了温度对 MoS2 树枝状薄片光致发光行为的影响。拉曼光谱和光致发光光谱证实了 MoS2 薄片的单层和多层行为。与单层光致发光光谱相比,多层体系的激发峰强度降低,并出现红移。这证明了热诱导的 MoS2 带隙调制。激子强度和峰值位置显示出明显的温度变化。这些变化可以通过增强的电子-声子相互作用和晶格重排来解释。此外,我们还利用第一原理计算深入了解了原子重排对 MoS2 带隙行为的影响。我们的研究提供了对单层和多层 MoS2 热驱动带隙调制的详细了解,这对设计光电器件至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信