Thanh Trung Nguyen , Minh Hai Vu , Thi Ha Ly Dinh , Thanh Hung Nguyen , Phi Le Nguyen , Kien Nguyen
{"title":"FQ-SAT: A fuzzy Q-learning-based MPQUIC scheduler for data transmission optimization","authors":"Thanh Trung Nguyen , Minh Hai Vu , Thi Ha Ly Dinh , Thanh Hung Nguyen , Phi Le Nguyen , Kien Nguyen","doi":"10.1016/j.comcom.2024.107924","DOIUrl":null,"url":null,"abstract":"<div><p>In the 5G and beyond era, multipath transport protocols, including MPQUIC, are necessary in various use cases. In MPQUIC, one of the most critical issues is efficiently scheduling the upcoming transmission packets on several paths considering path dynamicity. To this end, this paper introduces FQ-SAT - a novel Fuzzy Q-learning-based MPQUIC scheduler for data transmission optimization, including download time, in heterogeneous wireless networks. Different from previous works, FQ-SAT combines Q-learning and Fuzzy logic in an MPQUIC scheduler to determine optimal transmission on heterogeneous paths. FQ-SAT leverages the self-learning ability of reinforcement learning (i.e., in a Q-learning model) to deal with heterogeneity. Moreover, FQ-SAT facilitates Fuzzy logic to dynamically adjust the proposed Q-learning model’s hyper-parameters along with the networks’ rapid changes. We evaluate FQ-SAT extensively in various scenarios in both simulated and actual networks. The results show that FQ-SAT reduces the single-file download time by 3.2%–13.5% in simulation and by 4.1%–13.8% in actual network, reduces the download time of all resources up to 20.4% in web browsing evaluation, and reaches percentage of on-time segments up to 97.5% in video streaming, compared to state-of-the-art MPQUIC schedulers.</p></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"226 ","pages":"Article 107924"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366424002639","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the 5G and beyond era, multipath transport protocols, including MPQUIC, are necessary in various use cases. In MPQUIC, one of the most critical issues is efficiently scheduling the upcoming transmission packets on several paths considering path dynamicity. To this end, this paper introduces FQ-SAT - a novel Fuzzy Q-learning-based MPQUIC scheduler for data transmission optimization, including download time, in heterogeneous wireless networks. Different from previous works, FQ-SAT combines Q-learning and Fuzzy logic in an MPQUIC scheduler to determine optimal transmission on heterogeneous paths. FQ-SAT leverages the self-learning ability of reinforcement learning (i.e., in a Q-learning model) to deal with heterogeneity. Moreover, FQ-SAT facilitates Fuzzy logic to dynamically adjust the proposed Q-learning model’s hyper-parameters along with the networks’ rapid changes. We evaluate FQ-SAT extensively in various scenarios in both simulated and actual networks. The results show that FQ-SAT reduces the single-file download time by 3.2%–13.5% in simulation and by 4.1%–13.8% in actual network, reduces the download time of all resources up to 20.4% in web browsing evaluation, and reaches percentage of on-time segments up to 97.5% in video streaming, compared to state-of-the-art MPQUIC schedulers.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.