[Development of an Intelligent Multi-Parameter Sleep Diagnosis and Analysis System].

Q4 Medicine
Chenyang Li, Jilun Ye, Jian Guan
{"title":"[Development of an Intelligent Multi-Parameter Sleep Diagnosis and Analysis System].","authors":"Chenyang Li, Jilun Ye, Jian Guan","doi":"10.12455/j.issn.1671-7104.240036","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep disordered breathing (SDB) is a common sleep disorder with an increasing prevalence. The current gold standard for diagnosing SDB is polysomnography (PSG), but existing PSG techniques have some limitations, such as long manual interpretation times, a lack of data quality control, and insufficient monitoring of gas metabolism and hemodynamics. Therefore, there is an urgent need in China's sleep clinical applications to develop a new intelligent PSG system with data quality control, gas metabolism assessment, and hemodynamic monitoring capabilities. The new system, in terms of hardware, detects traditional parameters like nasal airflow, blood oxygen levels, electrocardiography (ECG), electroencephalography (EEG), electromyography (EMG), electrooculogram (EOG), and includes additional modules for gas metabolism assessment <i>via</i> end-tidal CO <sub>2</sub> and O <sub>2</sub> concentration, and hemodynamic function assessment through impedance cardiography. On the software side, deep learning methods are being employed to develop intelligent data quality control and diagnostic techniques. The goal is to provide detailed sleep quality assessments that effectively assist doctors in evaluating the sleep quality of SDB patients.</p>","PeriodicalId":52535,"journal":{"name":"中国医疗器械杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医疗器械杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12455/j.issn.1671-7104.240036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Sleep disordered breathing (SDB) is a common sleep disorder with an increasing prevalence. The current gold standard for diagnosing SDB is polysomnography (PSG), but existing PSG techniques have some limitations, such as long manual interpretation times, a lack of data quality control, and insufficient monitoring of gas metabolism and hemodynamics. Therefore, there is an urgent need in China's sleep clinical applications to develop a new intelligent PSG system with data quality control, gas metabolism assessment, and hemodynamic monitoring capabilities. The new system, in terms of hardware, detects traditional parameters like nasal airflow, blood oxygen levels, electrocardiography (ECG), electroencephalography (EEG), electromyography (EMG), electrooculogram (EOG), and includes additional modules for gas metabolism assessment via end-tidal CO 2 and O 2 concentration, and hemodynamic function assessment through impedance cardiography. On the software side, deep learning methods are being employed to develop intelligent data quality control and diagnostic techniques. The goal is to provide detailed sleep quality assessments that effectively assist doctors in evaluating the sleep quality of SDB patients.

[开发智能多参数睡眠诊断和分析系统]。
睡眠呼吸紊乱(SDB)是一种常见的睡眠障碍,发病率越来越高。目前诊断 SDB 的金标准是多导睡眠图(PSG),但现有的 PSG 技术存在一些局限性,如人工判读时间长、缺乏数据质量控制、气体代谢和血液动力学监测不足等。因此,中国的睡眠临床应用急需开发一种具有数据质量控制、气体代谢评估和血流动力学监测功能的新型智能 PSG 系统。新系统在硬件方面可检测鼻气流、血氧水平、心电图(ECG)、脑电图(EEG)、肌电图(EMG)、脑电图(EOG)等传统参数,并增加了通过潮气末CO 2和O 2浓度进行气体代谢评估和通过阻抗心动图进行血液动力学功能评估的模块。在软件方面,正在采用深度学习方法开发智能数据质量控制和诊断技术。目标是提供详细的睡眠质量评估,有效协助医生评估 SDB 患者的睡眠质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
中国医疗器械杂志
中国医疗器械杂志 Medicine-Medicine (all)
CiteScore
0.40
自引率
0.00%
发文量
8086
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信