[Deep Learning-Based Artificial Intelligence Model for Automatic Carotid Plaque Identification].

Q4 Medicine
Lan He, E Shen, Zekun Yang, Ying Zhang, Yudong Wang, Weidao Chen, Yitong Wang, Yongming He
{"title":"[Deep Learning-Based Artificial Intelligence Model for Automatic Carotid Plaque Identification].","authors":"Lan He, E Shen, Zekun Yang, Ying Zhang, Yudong Wang, Weidao Chen, Yitong Wang, Yongming He","doi":"10.12455/j.issn.1671-7104.240009","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims at developing a dataset for determining the presence of carotid artery plaques in ultrasound images, composed of 1761 ultrasound images from 1165 participants. A deep learning architecture that combines bilinear convolutional neural networks with residual neural networks, known as the single-input BCNN-ResNet model, was utilized to aid clinical doctors in diagnosing plaques using carotid ultrasound images. Following training, internal validation, and external validation, the model yielded an ROC AUC of 0.99 (95% confidence interval: 0.91 to 0.84) in internal validation and 0.95 (95% confidence interval: 0.96 to 0.94) in external validation, surpassing the ResNet-34 network model, which achieved an AUC of 0.98 (95% confidence interval: 0.99 to 0.95) in internal validation and 0.94 (95% confidence interval: 0.95 to 0.92) in external validation. Consequently, the single-input BCNN-ResNet network model has shown remarkable diagnostic capabilities and offers an innovative solution for the automatic detection of carotid artery plaques.</p>","PeriodicalId":52535,"journal":{"name":"中国医疗器械杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医疗器械杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12455/j.issn.1671-7104.240009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims at developing a dataset for determining the presence of carotid artery plaques in ultrasound images, composed of 1761 ultrasound images from 1165 participants. A deep learning architecture that combines bilinear convolutional neural networks with residual neural networks, known as the single-input BCNN-ResNet model, was utilized to aid clinical doctors in diagnosing plaques using carotid ultrasound images. Following training, internal validation, and external validation, the model yielded an ROC AUC of 0.99 (95% confidence interval: 0.91 to 0.84) in internal validation and 0.95 (95% confidence interval: 0.96 to 0.94) in external validation, surpassing the ResNet-34 network model, which achieved an AUC of 0.98 (95% confidence interval: 0.99 to 0.95) in internal validation and 0.94 (95% confidence interval: 0.95 to 0.92) in external validation. Consequently, the single-input BCNN-ResNet network model has shown remarkable diagnostic capabilities and offers an innovative solution for the automatic detection of carotid artery plaques.

[基于深度学习的颈动脉斑块自动识别人工智能模型]。
本研究旨在开发一个用于确定超声图像中是否存在颈动脉斑块的数据集,该数据集由来自1165名参与者的1761张超声图像组成。研究采用了一种结合了双线性卷积神经网络和残差神经网络的深度学习架构,即单输入 BCNN-ResNet 模型,来帮助临床医生使用颈动脉超声图像诊断斑块。经过训练、内部验证和外部验证后,该模型在内部验证中的ROC AUC为0.99(95%置信区间:0.91至0.84),在外部验证中的ROC AUC为0.95(95%置信区间:0.96至0.94),超过了ResNet-34网络模型,后者在内部验证中的AUC为0.98(95%置信区间:0.99至0.95),在外部验证中的AUC为0.94(95%置信区间:0.95至0.92)。因此,单输入 BCNN-ResNet 网络模型显示出了卓越的诊断能力,为颈动脉斑块的自动检测提供了一种创新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
中国医疗器械杂志
中国医疗器械杂志 Medicine-Medicine (all)
CiteScore
0.40
自引率
0.00%
发文量
8086
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信