Role of miR-93-5p and Its Opposing Effect of Ionizing Radiation in Non-Small Cell Lung Cancer.

IF 2.6 4区 医学 Q3 CELL BIOLOGY
Analytical Cellular Pathology Pub Date : 2024-08-10 eCollection Date: 2024-01-01 DOI:10.1155/2024/4218464
Qingtao Ni, Kai Sang, Jian Zhou, Chi Pan
{"title":"Role of miR-93-5p and Its Opposing Effect of Ionizing Radiation in Non-Small Cell Lung Cancer.","authors":"Qingtao Ni, Kai Sang, Jian Zhou, Chi Pan","doi":"10.1155/2024/4218464","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiation therapy is an effective local therapy for lung cancer. However, the interaction between genes and radiotherapy is multifaceted and intricate. Therefore, we explored the role of miR-93-5p in the proliferation, apoptosis, and migration abilities of A549 cells. Simultaneously, we also investigated the interactions between miR-93-5p and ionizing radiation (IR).</p><p><strong>Methods: </strong>Cell Counting Kit-8, transwell, and apoptotic assay were performed to measure the proliferation, migration, and apoptosis abilities. The expression levels of miR-93-5p and its target gene in lung cancer were predicted using starBase v3.0. Then, data were validated using qPCR and western blot.</p><p><strong>Results: </strong>miR-93-5p significantly promoted the proliferation (<i>P</i> < 0.01) and migration abilities (<i>P</i> < 0.001) of A549 cells. Gasdermin E (GSDME) was identified to be a putative target of miR-93-5p and had a negative correlation with miR-93-5p (<i>P</i> < 0.001). Overexpression of miR-93-5p significantly decreased GSDME in A549 (<i>P</i> < 0.001). Interestingly, miR-93-5p decreased cell proliferation (<i>P</i> < 0.01) and cell migration (<i>P</i> < 0.01) and increased apoptosis (<i>P</i> < 0.01) in A549 cells after exposure to IR.</p><p><strong>Conclusions: </strong>miR-93-5p is presumed to play an oncogenic role in lung cancer by enhancing A549 cell proliferation and migration. It can enhance the sensitivity of radiotherapy under IR conditions. We speculate that the miR-93-5p/GSDME pathway was inhibited, activating the GSDME-related pyroptosis pathway when the cells were exposed to IR. Therefore, miR-93-5p can overcome resistance to radiotherapy and improve the efficacy of radiotherapy.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330335/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/4218464","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Radiation therapy is an effective local therapy for lung cancer. However, the interaction between genes and radiotherapy is multifaceted and intricate. Therefore, we explored the role of miR-93-5p in the proliferation, apoptosis, and migration abilities of A549 cells. Simultaneously, we also investigated the interactions between miR-93-5p and ionizing radiation (IR).

Methods: Cell Counting Kit-8, transwell, and apoptotic assay were performed to measure the proliferation, migration, and apoptosis abilities. The expression levels of miR-93-5p and its target gene in lung cancer were predicted using starBase v3.0. Then, data were validated using qPCR and western blot.

Results: miR-93-5p significantly promoted the proliferation (P < 0.01) and migration abilities (P < 0.001) of A549 cells. Gasdermin E (GSDME) was identified to be a putative target of miR-93-5p and had a negative correlation with miR-93-5p (P < 0.001). Overexpression of miR-93-5p significantly decreased GSDME in A549 (P < 0.001). Interestingly, miR-93-5p decreased cell proliferation (P < 0.01) and cell migration (P < 0.01) and increased apoptosis (P < 0.01) in A549 cells after exposure to IR.

Conclusions: miR-93-5p is presumed to play an oncogenic role in lung cancer by enhancing A549 cell proliferation and migration. It can enhance the sensitivity of radiotherapy under IR conditions. We speculate that the miR-93-5p/GSDME pathway was inhibited, activating the GSDME-related pyroptosis pathway when the cells were exposed to IR. Therefore, miR-93-5p can overcome resistance to radiotherapy and improve the efficacy of radiotherapy.

非小细胞肺癌中 miR-93-5p 的作用及其与电离辐射的对抗效应
背景:放射治疗是一种有效的肺癌局部治疗方法。然而,基因与放疗之间的相互作用是多方面的、错综复杂的。因此,我们探讨了 miR-93-5p 在 A549 细胞增殖、凋亡和迁移能力中的作用。同时,我们还研究了 miR-93-5p 与电离辐射(IR)之间的相互作用:方法:采用细胞计数试剂盒-8、transwell 和细胞凋亡检测法测定 A549 细胞的增殖、迁移和凋亡能力。使用 starBase v3.0 预测了 miR-93-5p 及其靶基因在肺癌中的表达水平。结果显示:miR-93-5p 能显著促进 A549 细胞的增殖(P < 0.01)和迁移能力(P < 0.001)。研究发现,Gasdermin E(GSDME)是miR-93-5p的假定靶标,并且与miR-93-5p呈负相关(P < 0.001)。过表达 miR-93-5p 会显著降低 A549 中的 GSDME(P < 0.001)。有趣的是,miR-93-5p 能降低暴露于红外后 A549 细胞的细胞增殖(P < 0.01)和细胞迁移(P < 0.01),增加细胞凋亡(P < 0.01)。我们推测,miR-93-5p 能增强 A549 细胞的增殖和迁移,从而在肺癌中发挥致癌作用。我们推测,当细胞暴露于红外时,miR-93-5p/GSDME 通路受到抑制,激活了 GSDME 相关的热凋亡通路。因此,miR-93-5p能克服放疗耐药性,提高放疗疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Cellular Pathology
Analytical Cellular Pathology ONCOLOGY-CELL BIOLOGY
CiteScore
4.90
自引率
3.10%
发文量
70
审稿时长
16 weeks
期刊介绍: Analytical Cellular Pathology is a peer-reviewed, Open Access journal that provides a forum for scientists, medical practitioners and pathologists working in the area of cellular pathology. The journal publishes original research articles, review articles, and clinical studies related to cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, immunopathology, and hematology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信