Garfield T Kwan, Alexander M Clifford, Kaelan J Prime, Till S Harter, Martin Tresguerres
{"title":"Gill ionocyte remodeling mediates blood pH regulation in rockfish (<i>Sebastes diploproa</i>) exposed to environmentally relevant hypercapnia.","authors":"Garfield T Kwan, Alexander M Clifford, Kaelan J Prime, Till S Harter, Martin Tresguerres","doi":"10.1152/physiolgenomics.00057.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Marine fishes excrete excess H<sup>+</sup> using basolateral Na<sup>+</sup>-K<sup>+</sup>-ATPase (NKA) and apical Na<sup>+</sup>/H<sup>+</sup> exchanger 3 (NHE3) in gill ionocytes. However, the mechanisms that regulate H<sup>+</sup> excretion during exposure to environmentally relevant hypercapnia (ERH) remain poorly understood. Here, we explored transcriptomic, proteomic, and cellular responses in gills of juvenile splitnose rockfish (<i>Sebastes diploproa</i>) exposed to 3 days of ERH conditions (pH ∼7.5, ∼1,600 μatm Pco<sub>2</sub>). Blood pH was fully regulated at ∼7.75 despite a lack of significant changes in gill <i>1</i>) mRNAs coding for proteins involved in blood acid-base regulation, <i>2</i>) total NKA and NHE3 protein abundance, and <i>3</i>) ionocyte density. However, ERH-exposed rockfish demonstrated increased NKA and NHE3 abundance on the ionocyte plasma membrane coupled with wider apical membranes and greater extension of apical microvilli. The observed gill ionocyte remodeling is consistent with enhanced H<sup>+</sup> excretion that maintains blood pH homeostasis during exposure to ERH and does not necessitate changes at the expression or translation levels. These mechanisms of phenotypic plasticity may allow fishes to regulate blood pH during environmentally relevant acid-base challenges and thus have important implications for both understanding how organisms respond to climate change and for selecting appropriate metrics to evaluate its impact on marine ecosystems.<b>NEW & NOTEWORTHY</b> Splitnose rockfish exposed to environmentally relevant hypercapnia utilize existing proteins (rather than generate additional machinery) to maintain homeostasis.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00057.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Marine fishes excrete excess H+ using basolateral Na+-K+-ATPase (NKA) and apical Na+/H+ exchanger 3 (NHE3) in gill ionocytes. However, the mechanisms that regulate H+ excretion during exposure to environmentally relevant hypercapnia (ERH) remain poorly understood. Here, we explored transcriptomic, proteomic, and cellular responses in gills of juvenile splitnose rockfish (Sebastes diploproa) exposed to 3 days of ERH conditions (pH ∼7.5, ∼1,600 μatm Pco2). Blood pH was fully regulated at ∼7.75 despite a lack of significant changes in gill 1) mRNAs coding for proteins involved in blood acid-base regulation, 2) total NKA and NHE3 protein abundance, and 3) ionocyte density. However, ERH-exposed rockfish demonstrated increased NKA and NHE3 abundance on the ionocyte plasma membrane coupled with wider apical membranes and greater extension of apical microvilli. The observed gill ionocyte remodeling is consistent with enhanced H+ excretion that maintains blood pH homeostasis during exposure to ERH and does not necessitate changes at the expression or translation levels. These mechanisms of phenotypic plasticity may allow fishes to regulate blood pH during environmentally relevant acid-base challenges and thus have important implications for both understanding how organisms respond to climate change and for selecting appropriate metrics to evaluate its impact on marine ecosystems.NEW & NOTEWORTHY Splitnose rockfish exposed to environmentally relevant hypercapnia utilize existing proteins (rather than generate additional machinery) to maintain homeostasis.
期刊介绍:
The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.