{"title":"Phenotypic and genomic analysis of the hypervirulent methicillin-resistant <i>Staphylococcus aureus</i> ST630 clone in China.","authors":"Junhong Shi, Yanghua Xiao, Li Shen, Cailing Wan, Bingjie Wang, Peiyao Zhou, Jiao Zhang, Weihua Han, Fangyou Yu","doi":"10.1128/msystems.00664-24","DOIUrl":null,"url":null,"abstract":"<p><p>Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) sequence type 630 (ST630) is a rarely reported lineage worldwide. This study aimed to trace the dissemination of the emerging MRSA ST630 clones in China and investigate their virulence potential. We collected 22 ST630-MRSA isolates from across China and performed whole-genome sequencing analysis and virulence characterization on these isolates. Epidemiological results showed that MRSA ST630 isolates were primarily isolated from pus/wound secretions, mainly originating from Jiangxi province, and carried diverse virulence and drug resistance genes. Staphylococcal cassette chromosome mec type V (SCCmec V) predominated (11/22, 50.0%) among the MRSA ST630 isolates. Interestingly, nearly half (45.5%) of the 22 ST630-MRSA isolates tested lacked intact SCCmec elements. Phylogenetic analysis demonstrated that ST630-MRSA could be divided into two distinct clades, with widespread dissemination mainly in Chinese regions. Five representative isolates were selected for phenotypic assays, including hemolysin activity, real-time fluorescence quantitative PCR, western blot analysis, hydrogen peroxide killing assay, blood killing assay, cell adhesion and invasion assay, and mouse skin abscess model. The results showed that, compared to the USA300-LAC strain, ST630 isolates exhibited particularly strong invasiveness and virulence in the aforementioned phenotypic assays. This study described the emergence of a highly virulent ST630-MRSA lineage and improved our insight into the molecular epidemiology of ST630 clones in China.IMPORTANCEMethicillin-resistant <i>Staphylococcus aureus</i> (MRSA) sequence type 630 (ST630) is an emerging clone with an increasing isolation rate in China. This study raises awareness of the hypervirulent MRSA ST630 clones in China and alerts people to their widespread dissemination. ST630-staphylococcal cassette chromosome mec V is a noteworthy clone in China, and we present the first comprehensive genetic and phenotypic analysis of this lineage. Our findings provide valuable insights for the prevention and control of infections caused by this emerging MRSA clone.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0066424"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406941/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.00664-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) sequence type 630 (ST630) is a rarely reported lineage worldwide. This study aimed to trace the dissemination of the emerging MRSA ST630 clones in China and investigate their virulence potential. We collected 22 ST630-MRSA isolates from across China and performed whole-genome sequencing analysis and virulence characterization on these isolates. Epidemiological results showed that MRSA ST630 isolates were primarily isolated from pus/wound secretions, mainly originating from Jiangxi province, and carried diverse virulence and drug resistance genes. Staphylococcal cassette chromosome mec type V (SCCmec V) predominated (11/22, 50.0%) among the MRSA ST630 isolates. Interestingly, nearly half (45.5%) of the 22 ST630-MRSA isolates tested lacked intact SCCmec elements. Phylogenetic analysis demonstrated that ST630-MRSA could be divided into two distinct clades, with widespread dissemination mainly in Chinese regions. Five representative isolates were selected for phenotypic assays, including hemolysin activity, real-time fluorescence quantitative PCR, western blot analysis, hydrogen peroxide killing assay, blood killing assay, cell adhesion and invasion assay, and mouse skin abscess model. The results showed that, compared to the USA300-LAC strain, ST630 isolates exhibited particularly strong invasiveness and virulence in the aforementioned phenotypic assays. This study described the emergence of a highly virulent ST630-MRSA lineage and improved our insight into the molecular epidemiology of ST630 clones in China.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA) sequence type 630 (ST630) is an emerging clone with an increasing isolation rate in China. This study raises awareness of the hypervirulent MRSA ST630 clones in China and alerts people to their widespread dissemination. ST630-staphylococcal cassette chromosome mec V is a noteworthy clone in China, and we present the first comprehensive genetic and phenotypic analysis of this lineage. Our findings provide valuable insights for the prevention and control of infections caused by this emerging MRSA clone.
mSystemsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍:
mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.