{"title":"Correlation between hardness and SEM-EDS characterization of palm oil waste based biocoke","authors":"Asri Gani , Erdiwansyah , Hera Desvita , Saisa , Mahidin , Rizalman Mamat , Zulhaini Sartika , Ratna Eko Sarjono","doi":"10.1016/j.engeos.2024.100337","DOIUrl":null,"url":null,"abstract":"<div><p>This research investigates the relationship between hardness and microstructure obtained through SEM-EDS analysis of palm oil waste-based biocoke. The mechanical qualities and chemical composition of biocoke are being studied concerning the influence of temperature conditions. The manufacturing temperature of biocoke may vary between 150 °C and 190 °C. Utilizing SEM-EDS, we were able to characterize the microstructure and analyze the elemental composition, while the Hardness Shore D approach was used for the most complex materials. These results highlight the possibility of optimizing production temperature to produce biocoke with better mechanical performance. They show a positive correlation between biocoke hardness and structured carbon content. At 150 °C and 180 °C, respectively, the EFB biocoke reached its maximum hardness level of 62 ± 5. At 190 °C, OPM biocoke generated a 60 ± 5 times greater hardness than that of OPM and OPF biocoke. The OPT biocoke sample had the highest porosity with a score of 0.86, or 85.76%. Furthermore, compared to EFB biocoke, OPM and OPF biocokes had a priority of 0.84 (84.20%) and 0.83 (83.48%), respectively. Biocoke hardness is a quality indicator of physical and chemical qualities; the vital link between biocoke hardness, structural features, and elemental composition supports this idea.</p></div>","PeriodicalId":100469,"journal":{"name":"Energy Geoscience","volume":"5 4","pages":"Article 100337"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666759224000520/pdfft?md5=64dfbb99bbe23a7bcbe6bfc07d1f333e&pid=1-s2.0-S2666759224000520-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Geoscience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666759224000520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research investigates the relationship between hardness and microstructure obtained through SEM-EDS analysis of palm oil waste-based biocoke. The mechanical qualities and chemical composition of biocoke are being studied concerning the influence of temperature conditions. The manufacturing temperature of biocoke may vary between 150 °C and 190 °C. Utilizing SEM-EDS, we were able to characterize the microstructure and analyze the elemental composition, while the Hardness Shore D approach was used for the most complex materials. These results highlight the possibility of optimizing production temperature to produce biocoke with better mechanical performance. They show a positive correlation between biocoke hardness and structured carbon content. At 150 °C and 180 °C, respectively, the EFB biocoke reached its maximum hardness level of 62 ± 5. At 190 °C, OPM biocoke generated a 60 ± 5 times greater hardness than that of OPM and OPF biocoke. The OPT biocoke sample had the highest porosity with a score of 0.86, or 85.76%. Furthermore, compared to EFB biocoke, OPM and OPF biocokes had a priority of 0.84 (84.20%) and 0.83 (83.48%), respectively. Biocoke hardness is a quality indicator of physical and chemical qualities; the vital link between biocoke hardness, structural features, and elemental composition supports this idea.