Haolin Chen , Xiaohua Zhao , Chen Chen , Zhenlong Li , Haijian Li , Jianguo Gong
{"title":"How to define the threshold of takeover response ability of different drivers in conditional automated driving","authors":"Haolin Chen , Xiaohua Zhao , Chen Chen , Zhenlong Li , Haijian Li , Jianguo Gong","doi":"10.1016/j.trf.2024.08.013","DOIUrl":null,"url":null,"abstract":"<div><p>In conditional automated driving, the takeover response ability threshold is necessary for driver qualification assessment and liability division of automated vehicle accidents. The primary objective of this study is to establish a clear and quantifiable threshold for drivers’ takeover response ability in conditional automated driving scenarios. This threshold aims to serve as a benchmark for evaluating drivers’ readiness and developing safety regulations in automated driving. We designed 18 takeover events and invited 42 drivers to participate in the driving simulation experiment, and obtained their takeover time data. First, we analyze the differences of takeover time among drivers with different attributes (gender, age, driving year). Second, based on the Peaks Over Threshold and the generalized Pareto distribution model, we use the graphic method to calculate the range of takeover time threshold for drivers with different attributes. The result shows that the difference in the threshold range of takeover time between male and female drivers is relatively tiny. There are differences in the threshold range of takeover time for different age drivers, and the threshold is negatively correlated with age. Drivers with high driving experience within a safe range are allowed to have longer takeover times. Finally, the rationality of the takeover time threshold for drivers with different attributes has been verified. The return level curves are approximately linear (<em>R<sup>2</sup></em> > 0.77), indicating that the GPD model can capture the overall trend of the return level, which is changing with the probability level. This proves that the takeover time threshold is reasonable. This study uses TTC<em><sub>min</sub></em> to calibrate takeover safety, and the takeover time threshold has a good classification performance for takeover safety (accuracy > 85 %). The above content proves the rationality of the takeover time threshold. The contribution of this study is to calculate the takeover time threshold of drivers with different attributes, which can help regulatory authorities assess the driver’s takeover response ability and support the liability division of automated vehicle accidents.</p></div>","PeriodicalId":48355,"journal":{"name":"Transportation Research Part F-Traffic Psychology and Behaviour","volume":"106 ","pages":"Pages 179-198"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part F-Traffic Psychology and Behaviour","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369847824002201","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In conditional automated driving, the takeover response ability threshold is necessary for driver qualification assessment and liability division of automated vehicle accidents. The primary objective of this study is to establish a clear and quantifiable threshold for drivers’ takeover response ability in conditional automated driving scenarios. This threshold aims to serve as a benchmark for evaluating drivers’ readiness and developing safety regulations in automated driving. We designed 18 takeover events and invited 42 drivers to participate in the driving simulation experiment, and obtained their takeover time data. First, we analyze the differences of takeover time among drivers with different attributes (gender, age, driving year). Second, based on the Peaks Over Threshold and the generalized Pareto distribution model, we use the graphic method to calculate the range of takeover time threshold for drivers with different attributes. The result shows that the difference in the threshold range of takeover time between male and female drivers is relatively tiny. There are differences in the threshold range of takeover time for different age drivers, and the threshold is negatively correlated with age. Drivers with high driving experience within a safe range are allowed to have longer takeover times. Finally, the rationality of the takeover time threshold for drivers with different attributes has been verified. The return level curves are approximately linear (R2 > 0.77), indicating that the GPD model can capture the overall trend of the return level, which is changing with the probability level. This proves that the takeover time threshold is reasonable. This study uses TTCmin to calibrate takeover safety, and the takeover time threshold has a good classification performance for takeover safety (accuracy > 85 %). The above content proves the rationality of the takeover time threshold. The contribution of this study is to calculate the takeover time threshold of drivers with different attributes, which can help regulatory authorities assess the driver’s takeover response ability and support the liability division of automated vehicle accidents.
期刊介绍:
Transportation Research Part F: Traffic Psychology and Behaviour focuses on the behavioural and psychological aspects of traffic and transport. The aim of the journal is to enhance theory development, improve the quality of empirical studies and to stimulate the application of research findings in practice. TRF provides a focus and a means of communication for the considerable amount of research activities that are now being carried out in this field. The journal provides a forum for transportation researchers, psychologists, ergonomists, engineers and policy-makers with an interest in traffic and transport psychology.