Digital twin and blockchain-enabled trusted optimal-state synchronized control approach for distributed smart manufacturing system in social manufacturing
Zhongfei Zhang , Ting Qu , George Q. Huang , Kuo Zhao , Kai Zhang , Mingxing Li , Yongheng Zhang , Lei Liu , Haihui Zhong
{"title":"Digital twin and blockchain-enabled trusted optimal-state synchronized control approach for distributed smart manufacturing system in social manufacturing","authors":"Zhongfei Zhang , Ting Qu , George Q. Huang , Kuo Zhao , Kai Zhang , Mingxing Li , Yongheng Zhang , Lei Liu , Haihui Zhong","doi":"10.1016/j.jmsy.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>The interaction between customer demands and manufacturing paradigms is becoming increasingly apparent. As the demand for personalized products grows, the manufacturing industry is evolving towards a socialized manufacturing paradigm. This shift makes the manufacturing system more unstable and complex, necessitating organization of production through a socialized resource service platform. Unlike traditional systems, emerging distributed smart manufacturing system (DSMS) face challenges of trusted collaborative operation and real-time optimal-state control in dynamic operational environments. To overcome these challenges, we propose a trusted optimal-state synchronized control (OSsC) approach suitable for DSMS to ensure optimal operation under dynamic customer demands. This paper introduces a digital twin and blockchain-based trusted optimal-state control framework for reliable decision-making, integrating OSsC approach into a trusted virtual layer to achieve real-time optimal target setting. We also propose a blockchain-based mechanism for trusted synchronized operation in open production logistics, enhancing cross-domain trust and intelligent selection of units under dynamic interruptions. Furthermore, we apply the analytical target cascading method for multi-objective synchronized optimization decision model in complex systems. A case study in the air conditioning manufacturing industry demonstrates the effectiveness of the framework, mechanism, and algorithm in enhancing reliability and reducing costs in dynamic environments, providing valuable insights for the optimization design and reliable operation of future manufacturing systems.</p></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"76 ","pages":"Pages 385-410"},"PeriodicalIF":12.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524001675","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction between customer demands and manufacturing paradigms is becoming increasingly apparent. As the demand for personalized products grows, the manufacturing industry is evolving towards a socialized manufacturing paradigm. This shift makes the manufacturing system more unstable and complex, necessitating organization of production through a socialized resource service platform. Unlike traditional systems, emerging distributed smart manufacturing system (DSMS) face challenges of trusted collaborative operation and real-time optimal-state control in dynamic operational environments. To overcome these challenges, we propose a trusted optimal-state synchronized control (OSsC) approach suitable for DSMS to ensure optimal operation under dynamic customer demands. This paper introduces a digital twin and blockchain-based trusted optimal-state control framework for reliable decision-making, integrating OSsC approach into a trusted virtual layer to achieve real-time optimal target setting. We also propose a blockchain-based mechanism for trusted synchronized operation in open production logistics, enhancing cross-domain trust and intelligent selection of units under dynamic interruptions. Furthermore, we apply the analytical target cascading method for multi-objective synchronized optimization decision model in complex systems. A case study in the air conditioning manufacturing industry demonstrates the effectiveness of the framework, mechanism, and algorithm in enhancing reliability and reducing costs in dynamic environments, providing valuable insights for the optimization design and reliable operation of future manufacturing systems.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.