{"title":"Crack growth in sandwich-structured foam core graphite epoxy laminate composite using a phase-field modelling approach","authors":"Manish Singh Rajput, Himanshu Pathak","doi":"10.1016/j.finmec.2024.100284","DOIUrl":null,"url":null,"abstract":"<div><p>The laminated sandwich composites have wide structure-making applications in the automotive and aviation fields due to their lightweight and superior flexural rigidity properties. Making grooves or holes to assemble more than one structure induces crack discontinuities near the stress concentration region in these sandwich structures. The present work examines the effect of crack discontinuities on the mechanical performance and failure process of the sandwich structures under different loading conditions. Phase field method (PFM) has been presented and implemented using in-house developed MATLAB code. The effect of holes, multiple cracks, number of cores, and loading conditions are analyzed for the mechanical and fracture behavior of the structure. Load-carrying capacity, threshold displacement value for crack initiation, crack propagation trajectory, and energy absorption capacity are compared for various crack discontinuities under different loading conditions. Approximately 35% increase in load carrying capacity is observed in equivalent multiple core sandwich structures.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359724000301/pdfft?md5=2e0c64f9b887eece81f6844eca94fc0a&pid=1-s2.0-S2666359724000301-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359724000301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The laminated sandwich composites have wide structure-making applications in the automotive and aviation fields due to their lightweight and superior flexural rigidity properties. Making grooves or holes to assemble more than one structure induces crack discontinuities near the stress concentration region in these sandwich structures. The present work examines the effect of crack discontinuities on the mechanical performance and failure process of the sandwich structures under different loading conditions. Phase field method (PFM) has been presented and implemented using in-house developed MATLAB code. The effect of holes, multiple cracks, number of cores, and loading conditions are analyzed for the mechanical and fracture behavior of the structure. Load-carrying capacity, threshold displacement value for crack initiation, crack propagation trajectory, and energy absorption capacity are compared for various crack discontinuities under different loading conditions. Approximately 35% increase in load carrying capacity is observed in equivalent multiple core sandwich structures.