{"title":"Investigation of soil arching in GRPS embankments under localized loading: Multi-span spring-based trapdoor model test","authors":"","doi":"10.1016/j.geotexmem.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>A novel multi-span spring-based trapdoor apparatus has been developed to simulate more realistically the coupling of piles, soft soil, and geosynthetics, as well as the intricate interactions between adjacent soil arches under localized loading within geo-reinforced pile-supported (GRPS) embankments. By employing movable blocks with varying spring stiffnesses, this study advances the understanding of the coupling effect between piles, soft soil, and geosynthetics. Utilizing digital image correlation (DIC) technology, the research captures the dynamic evolution of soil arch shapes, providing new insights into stabilization mechanisms within GRPS embankments. It is found that lateral geosynthetics can effectively reduce the overall settlement of the embankment and mitigate the influence of trapdoor stiffness on the soil arch height. The geo-reinforcement enhances the stability of soil arches under localized loading by providing essential support to the arch feet of multiple internal soil arches. Four distinct stages in soil arch evolution under localized loading have been identified. The relationship between geo-reinforcement stiffness and trapdoor stiffness in affecting soil arching is complex and varies with different loading scenarios. The membrane effect plays a pivotal role in inter-span load transfer.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000748","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel multi-span spring-based trapdoor apparatus has been developed to simulate more realistically the coupling of piles, soft soil, and geosynthetics, as well as the intricate interactions between adjacent soil arches under localized loading within geo-reinforced pile-supported (GRPS) embankments. By employing movable blocks with varying spring stiffnesses, this study advances the understanding of the coupling effect between piles, soft soil, and geosynthetics. Utilizing digital image correlation (DIC) technology, the research captures the dynamic evolution of soil arch shapes, providing new insights into stabilization mechanisms within GRPS embankments. It is found that lateral geosynthetics can effectively reduce the overall settlement of the embankment and mitigate the influence of trapdoor stiffness on the soil arch height. The geo-reinforcement enhances the stability of soil arches under localized loading by providing essential support to the arch feet of multiple internal soil arches. Four distinct stages in soil arch evolution under localized loading have been identified. The relationship between geo-reinforcement stiffness and trapdoor stiffness in affecting soil arching is complex and varies with different loading scenarios. The membrane effect plays a pivotal role in inter-span load transfer.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.