{"title":"Accelerating predictions of electronic transport and superconductivity","authors":"Ting Cao","doi":"10.1038/s43588-024-00678-5","DOIUrl":null,"url":null,"abstract":"By developing a machine learning framework, a recent study substantially accelerates the calculation of electron–phonon coupling, making it computationally feasible to predict and understand a range of important physical phenomena, including electronic transport, hot-carrier relaxation, and superconductivity in complex materials.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 8","pages":"561-562"},"PeriodicalIF":12.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00678-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
By developing a machine learning framework, a recent study substantially accelerates the calculation of electron–phonon coupling, making it computationally feasible to predict and understand a range of important physical phenomena, including electronic transport, hot-carrier relaxation, and superconductivity in complex materials.