The Impact of Artificial Intelligence-Assisted Learning on Nursing Students' Ethical Decision-making and Clinical Reasoning in Pediatric Care: A Quasi-Experimental Study.
IF 1.3 4区 医学Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hyewon Shin, Jennie C De Gagne, Sang Suk Kim, Minjoo Hong
{"title":"The Impact of Artificial Intelligence-Assisted Learning on Nursing Students' Ethical Decision-making and Clinical Reasoning in Pediatric Care: A Quasi-Experimental Study.","authors":"Hyewon Shin, Jennie C De Gagne, Sang Suk Kim, Minjoo Hong","doi":"10.1097/CIN.0000000000001177","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of artificial intelligence such as ChatGPT into educational frameworks marks a pivotal transformation in teaching. This quasi-experimental study, conducted in September 2023, aimed to evaluate the effects of artificial intelligence-assisted learning on nursing students' ethical decision-making and clinical reasoning. A total of 99 nursing students enrolled in a pediatric nursing course were randomly divided into two groups: an experimental group that utilized ChatGPT and a control group that used traditional textbooks. The Mann-Whitney U test was employed to assess differences between the groups in two primary outcomes: ( a ) ethical standards, focusing on the understanding and applying ethical principles, and ( b ) nursing processes, emphasizing critical thinking skills and integrating evidence-based knowledge. The control group outperformed the experimental group in ethical standards and demonstrated better clinical reasoning in nursing processes. Reflective essays revealed that the experimental group reported lower reliability but higher time efficiency. Despite artificial intelligence's ability to offer diverse perspectives, the findings highlight that educators must supplement artificial intelligence technology with strategies that enhance critical thinking, careful data selection, and source verification. This study suggests a hybrid educational approach combining artificial intelligence with traditional learning methods to bolster nursing students' decision-making processes and clinical reasoning skills.</p>","PeriodicalId":50694,"journal":{"name":"Cin-Computers Informatics Nursing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cin-Computers Informatics Nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CIN.0000000000001177","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of artificial intelligence such as ChatGPT into educational frameworks marks a pivotal transformation in teaching. This quasi-experimental study, conducted in September 2023, aimed to evaluate the effects of artificial intelligence-assisted learning on nursing students' ethical decision-making and clinical reasoning. A total of 99 nursing students enrolled in a pediatric nursing course were randomly divided into two groups: an experimental group that utilized ChatGPT and a control group that used traditional textbooks. The Mann-Whitney U test was employed to assess differences between the groups in two primary outcomes: ( a ) ethical standards, focusing on the understanding and applying ethical principles, and ( b ) nursing processes, emphasizing critical thinking skills and integrating evidence-based knowledge. The control group outperformed the experimental group in ethical standards and demonstrated better clinical reasoning in nursing processes. Reflective essays revealed that the experimental group reported lower reliability but higher time efficiency. Despite artificial intelligence's ability to offer diverse perspectives, the findings highlight that educators must supplement artificial intelligence technology with strategies that enhance critical thinking, careful data selection, and source verification. This study suggests a hybrid educational approach combining artificial intelligence with traditional learning methods to bolster nursing students' decision-making processes and clinical reasoning skills.
期刊介绍:
For over 30 years, CIN: Computers, Informatics, Nursing has been at the interface of the science of information and the art of nursing, publishing articles on the latest developments in nursing informatics, research, education and administrative of health information technology. CIN connects you with colleagues as they share knowledge on implementation of electronic health records systems, design decision-support systems, incorporate evidence-based healthcare in practice, explore point-of-care computing in practice and education, and conceptually integrate nursing languages and standard data sets. Continuing education contact hours are available in every issue.