Mohammad Humayun Kabir, Marek Reformat, Sarah Southon Hryniuk, Kyle Stampe, Edmond Lou
{"title":"Validity of machine learning algorithms for automatically extract growing rod length on radiographs in children with early-onset scoliosis.","authors":"Mohammad Humayun Kabir, Marek Reformat, Sarah Southon Hryniuk, Kyle Stampe, Edmond Lou","doi":"10.1007/s11517-024-03181-1","DOIUrl":null,"url":null,"abstract":"<p><p>The magnetically controlled growing rod technique is an effective surgical treatment for children who have early-onset scoliosis. The length of the instrumented growing rods is adjusted regularly to compensate for the normal growth of these patients. Manual measurement of rod length on posteroanterior spine radiographs is subjective and time-consuming. A machine learning (ML) system using a deep learning approach was developed to automatically measure the adjusted rod length. Three ML models-rod model, 58 mm model, and head-piece model-were developed to extract the rod length from radiographs. Three-hundred and eighty-seven radiographs were used for model development, and 60 radiographs with 118 rods were separated for final testing. The average precision (AP), the mean absolute difference (MAD) ± standard deviation (SD), and the inter-method correlation coefficient (ICC<sub>[2,1]</sub>) between the manual and artificial intelligence (AI) adjustment measurements were used to evaluate the developed method. The AP of the 3 models were 67.6%, 94.8%, and 86.3%, respectively. The MAD ± SD of the rod length change was 0.98 ± 0.88 mm, and the ICC<sub>[2,1]</sub> was 0.90. The average time to output a single rod measurement was 6.1 s. The developed AI provided an accurate and reliable method to detect the rod length automatically.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"101-110"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03181-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The magnetically controlled growing rod technique is an effective surgical treatment for children who have early-onset scoliosis. The length of the instrumented growing rods is adjusted regularly to compensate for the normal growth of these patients. Manual measurement of rod length on posteroanterior spine radiographs is subjective and time-consuming. A machine learning (ML) system using a deep learning approach was developed to automatically measure the adjusted rod length. Three ML models-rod model, 58 mm model, and head-piece model-were developed to extract the rod length from radiographs. Three-hundred and eighty-seven radiographs were used for model development, and 60 radiographs with 118 rods were separated for final testing. The average precision (AP), the mean absolute difference (MAD) ± standard deviation (SD), and the inter-method correlation coefficient (ICC[2,1]) between the manual and artificial intelligence (AI) adjustment measurements were used to evaluate the developed method. The AP of the 3 models were 67.6%, 94.8%, and 86.3%, respectively. The MAD ± SD of the rod length change was 0.98 ± 0.88 mm, and the ICC[2,1] was 0.90. The average time to output a single rod measurement was 6.1 s. The developed AI provided an accurate and reliable method to detect the rod length automatically.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).