Influence of β2-adrenergic selective agonist formoterol on the motor unit of a mouse model of a congenital myasthenic syndrome with complete VAChT deletion
{"title":"Influence of β2-adrenergic selective agonist formoterol on the motor unit of a mouse model of a congenital myasthenic syndrome with complete VAChT deletion","authors":"","doi":"10.1016/j.neuropharm.2024.110116","DOIUrl":null,"url":null,"abstract":"<div><p>Congenital Myasthenic Syndromes (CMS) are a set of genetic diseases that affect the neuromuscular transmission causing muscular weakness. The standard pharmacological treatment aims at ameliorating the myasthenic symptom by acetylcholinesterase inhibitors. Most patients respond well in the short and medium term, however, over time the beneficial effects rapidly fade, and the efficacy of the treatment diminishes. Increasing evidence shows that β<sub>2</sub>-adrenergic agonists can be a suitable choice for the treatment of neuromuscular disorders, including CMS, as they promote beneficial effects in the neuromuscular system. The exact mechanism on which they rely is not completely understood, although patients and animal models respond well to the treatment, especially over extended periods. Here, we report the use of the long-lasting specific β<sub>2</sub>-adrenergic agonist formoterol in a myasthenic mouse model (mnVAChT-KD), featuring deletion of VAChT (Vesicular Acetylcholine Transporter) specifically in the α-motoneurons. Our findings demonstrate that formoterol treatment (300 μg/kg/day; sc) for 30 days increased the neuromuscular junction area, induced skeletal muscle hypertrophy and altered fibre type composition in myasthenic mice. Interestingly, β<sub>2</sub>-adrenergic agonists have shown efficacy even in the absence of ACh (acetylcholine). Our data provide important evidence supporting the potential of β<sub>2</sub>-adrenergic agonists in treating neuromuscular disorders of pre-synaptic origin and characterized by disruptions in nerve-muscle communication, through a direct and beneficial action within the motor unit.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390824002855","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Congenital Myasthenic Syndromes (CMS) are a set of genetic diseases that affect the neuromuscular transmission causing muscular weakness. The standard pharmacological treatment aims at ameliorating the myasthenic symptom by acetylcholinesterase inhibitors. Most patients respond well in the short and medium term, however, over time the beneficial effects rapidly fade, and the efficacy of the treatment diminishes. Increasing evidence shows that β2-adrenergic agonists can be a suitable choice for the treatment of neuromuscular disorders, including CMS, as they promote beneficial effects in the neuromuscular system. The exact mechanism on which they rely is not completely understood, although patients and animal models respond well to the treatment, especially over extended periods. Here, we report the use of the long-lasting specific β2-adrenergic agonist formoterol in a myasthenic mouse model (mnVAChT-KD), featuring deletion of VAChT (Vesicular Acetylcholine Transporter) specifically in the α-motoneurons. Our findings demonstrate that formoterol treatment (300 μg/kg/day; sc) for 30 days increased the neuromuscular junction area, induced skeletal muscle hypertrophy and altered fibre type composition in myasthenic mice. Interestingly, β2-adrenergic agonists have shown efficacy even in the absence of ACh (acetylcholine). Our data provide important evidence supporting the potential of β2-adrenergic agonists in treating neuromuscular disorders of pre-synaptic origin and characterized by disruptions in nerve-muscle communication, through a direct and beneficial action within the motor unit.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).