Muduo Li, Xiaohong Zhu, Yuying Zhang, Daniel C. W. Tsang
{"title":"A multi-phase mechanical model of biochar–cement composites at the mesoscale","authors":"Muduo Li, Xiaohong Zhu, Yuying Zhang, Daniel C. W. Tsang","doi":"10.1111/mice.13307","DOIUrl":null,"url":null,"abstract":"<p>This study presents a five-phase mesoscale modeling framework specifically developed to investigate crack propagation and mechanical properties of biochar–cement composites. The multi-phase model includes porous biochar particles with precise geometric construction, sand aggregates, cement matrix, and interfacial transition zone adjunct to both the biochar particles and sand aggregates. The 3D porous biochar library was first proposed and established in this study, which could provide an external interface for describing different pore shapes, wall thicknesses, and pore areas. All the simulation results were experimentally validated using a digital image correlation. Through precise geometric modeling, the unique failure modes and timing of biochar particles within the mortar were identified. This is analogous to the “strong column–weak beam” concept, accounting for the enhanced ductility observed in the biochar–cement composites under compression test. This work can advance the geometric modeling of porous aggregates broadly and elucidate their mesoscopic failure mechanisms in cementitious materials, thus providing new insights for developing high-ductility and lightweight cement composites.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"39 23","pages":"3552-3572"},"PeriodicalIF":8.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13307","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mice.13307","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a five-phase mesoscale modeling framework specifically developed to investigate crack propagation and mechanical properties of biochar–cement composites. The multi-phase model includes porous biochar particles with precise geometric construction, sand aggregates, cement matrix, and interfacial transition zone adjunct to both the biochar particles and sand aggregates. The 3D porous biochar library was first proposed and established in this study, which could provide an external interface for describing different pore shapes, wall thicknesses, and pore areas. All the simulation results were experimentally validated using a digital image correlation. Through precise geometric modeling, the unique failure modes and timing of biochar particles within the mortar were identified. This is analogous to the “strong column–weak beam” concept, accounting for the enhanced ductility observed in the biochar–cement composites under compression test. This work can advance the geometric modeling of porous aggregates broadly and elucidate their mesoscopic failure mechanisms in cementitious materials, thus providing new insights for developing high-ductility and lightweight cement composites.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.